AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.275 | 0.606 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.743 |
Model: | OLS | Adj. R-squared: | 0.703 |
Method: | Least Squares | F-statistic: | 18.34 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 7.76e-06 |
Time: | 22:53:06 | Log-Likelihood: | -97.466 |
No. Observations: | 23 | AIC: | 202.9 |
Df Residuals: | 19 | BIC: | 207.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -27.1377 | 102.584 | -0.265 | 0.794 | -241.848 187.573 |
C(dose)[T.1] | 568.7749 | 200.608 | 2.835 | 0.011 | 148.897 988.653 |
expression | 10.4212 | 13.124 | 0.794 | 0.437 | -17.048 37.891 |
expression:C(dose)[T.1] | -66.5893 | 25.871 | -2.574 | 0.019 | -120.738 -12.440 |
Omnibus: | 0.317 | Durbin-Watson: | 1.713 |
Prob(Omnibus): | 0.853 | Jarque-Bera (JB): | 0.243 |
Skew: | -0.218 | Prob(JB): | 0.886 |
Kurtosis: | 2.748 | Cond. No. | 485. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 18.89 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.47e-05 |
Time: | 22:53:06 | Log-Likelihood: | -100.91 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 106.6279 | 100.113 | 1.065 | 0.300 | -102.204 315.460 |
C(dose)[T.1] | 52.8177 | 8.766 | 6.025 | 0.000 | 34.532 71.104 |
expression | -6.7155 | 12.802 | -0.525 | 0.606 | -33.420 19.989 |
Omnibus: | 0.015 | Durbin-Watson: | 1.780 |
Prob(Omnibus): | 0.993 | Jarque-Bera (JB): | 0.212 |
Skew: | 0.019 | Prob(JB): | 0.899 |
Kurtosis: | 2.531 | Cond. No. | 182. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:53:06 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.025 |
Model: | OLS | Adj. R-squared: | -0.021 |
Method: | Least Squares | F-statistic: | 0.5488 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.467 |
Time: | 22:53:06 | Log-Likelihood: | -112.81 |
No. Observations: | 23 | AIC: | 229.6 |
Df Residuals: | 21 | BIC: | 231.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 199.5823 | 161.966 | 1.232 | 0.231 | -137.244 536.409 |
expression | -15.4290 | 20.828 | -0.741 | 0.467 | -58.743 27.885 |
Omnibus: | 2.871 | Durbin-Watson: | 2.327 |
Prob(Omnibus): | 0.238 | Jarque-Bera (JB): | 1.265 |
Skew: | 0.063 | Prob(JB): | 0.531 |
Kurtosis: | 1.858 | Cond. No. | 180. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.019 | 0.893 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.482 |
Model: | OLS | Adj. R-squared: | 0.340 |
Method: | Least Squares | F-statistic: | 3.409 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0568 |
Time: | 22:53:06 | Log-Likelihood: | -70.369 |
No. Observations: | 15 | AIC: | 148.7 |
Df Residuals: | 11 | BIC: | 151.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 163.7050 | 235.186 | 0.696 | 0.501 | -353.935 681.345 |
C(dose)[T.1] | -263.4574 | 378.401 | -0.696 | 0.501 | -1096.311 569.397 |
expression | -11.2291 | 27.397 | -0.410 | 0.690 | -71.529 49.071 |
expression:C(dose)[T.1] | 36.3064 | 43.924 | 0.827 | 0.426 | -60.370 132.983 |
Omnibus: | 1.053 | Durbin-Watson: | 0.876 |
Prob(Omnibus): | 0.591 | Jarque-Bera (JB): | 0.770 |
Skew: | -0.510 | Prob(JB): | 0.680 |
Kurtosis: | 2.562 | Cond. No. | 526. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.902 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0278 |
Time: | 22:53:06 | Log-Likelihood: | -70.821 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 42.6012 | 181.529 | 0.235 | 0.818 | -352.916 438.118 |
C(dose)[T.1] | 49.0384 | 15.770 | 3.110 | 0.009 | 14.680 83.397 |
expression | 2.8957 | 21.130 | 0.137 | 0.893 | -43.142 48.934 |
Omnibus: | 2.658 | Durbin-Watson: | 0.820 |
Prob(Omnibus): | 0.265 | Jarque-Bera (JB): | 1.835 |
Skew: | -0.834 | Prob(JB): | 0.400 |
Kurtosis: | 2.612 | Cond. No. | 202. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:53:06 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.006 |
Model: | OLS | Adj. R-squared: | -0.070 |
Method: | Least Squares | F-statistic: | 0.08007 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.782 |
Time: | 22:53:06 | Log-Likelihood: | -75.254 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 27.4325 | 234.287 | 0.117 | 0.909 | -478.714 533.579 |
expression | 7.6990 | 27.208 | 0.283 | 0.782 | -51.080 66.478 |
Omnibus: | 0.232 | Durbin-Watson: | 1.592 |
Prob(Omnibus): | 0.890 | Jarque-Bera (JB): | 0.415 |
Skew: | 0.002 | Prob(JB): | 0.813 |
Kurtosis: | 2.185 | Cond. No. | 202. |