AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.194 | 0.154 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.685 |
Model: | OLS | Adj. R-squared: | 0.635 |
Method: | Least Squares | F-statistic: | 13.75 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.30e-05 |
Time: | 04:52:31 | Log-Likelihood: | -99.835 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 19 | BIC: | 212.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 393.8653 | 285.412 | 1.380 | 0.184 | -203.509 991.240 |
C(dose)[T.1] | -49.7401 | 398.470 | -0.125 | 0.902 | -883.747 784.267 |
expression | -32.4059 | 27.225 | -1.190 | 0.249 | -89.388 24.576 |
expression:C(dose)[T.1] | 8.8164 | 38.853 | 0.227 | 0.823 | -72.503 90.136 |
Omnibus: | 0.032 | Durbin-Watson: | 2.164 |
Prob(Omnibus): | 0.984 | Jarque-Bera (JB): | 0.203 |
Skew: | -0.072 | Prob(JB): | 0.903 |
Kurtosis: | 2.562 | Cond. No. | 1.25e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.684 |
Model: | OLS | Adj. R-squared: | 0.652 |
Method: | Least Squares | F-statistic: | 21.62 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.00e-05 |
Time: | 04:52:31 | Log-Likelihood: | -99.866 |
No. Observations: | 23 | AIC: | 205.7 |
Df Residuals: | 20 | BIC: | 209.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 348.4925 | 198.778 | 1.753 | 0.095 | -66.150 763.135 |
C(dose)[T.1] | 40.6378 | 11.951 | 3.400 | 0.003 | 15.709 65.567 |
expression | -28.0770 | 18.957 | -1.481 | 0.154 | -67.620 11.467 |
Omnibus: | 0.014 | Durbin-Watson: | 2.195 |
Prob(Omnibus): | 0.993 | Jarque-Bera (JB): | 0.143 |
Skew: | -0.047 | Prob(JB): | 0.931 |
Kurtosis: | 2.625 | Cond. No. | 496. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:52:31 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.501 |
Model: | OLS | Adj. R-squared: | 0.477 |
Method: | Least Squares | F-statistic: | 21.08 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000158 |
Time: | 04:52:31 | Log-Likelihood: | -105.11 |
No. Observations: | 23 | AIC: | 214.2 |
Df Residuals: | 21 | BIC: | 216.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 842.6586 | 166.264 | 5.068 | 0.000 | 496.894 1188.423 |
expression | -74.3244 | 16.189 | -4.591 | 0.000 | -107.992 -40.656 |
Omnibus: | 0.073 | Durbin-Watson: | 2.530 |
Prob(Omnibus): | 0.964 | Jarque-Bera (JB): | 0.169 |
Skew: | 0.110 | Prob(JB): | 0.919 |
Kurtosis: | 2.642 | Cond. No. | 338. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
5.595 | 0.036 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.664 |
Model: | OLS | Adj. R-squared: | 0.572 |
Method: | Least Squares | F-statistic: | 7.234 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00596 |
Time: | 04:52:31 | Log-Likelihood: | -67.129 |
No. Observations: | 15 | AIC: | 142.3 |
Df Residuals: | 11 | BIC: | 145.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 457.7832 | 220.037 | 2.080 | 0.062 | -26.516 942.082 |
C(dose)[T.1] | 719.6847 | 582.324 | 1.236 | 0.242 | -562.002 2001.371 |
expression | -37.3244 | 21.020 | -1.776 | 0.103 | -83.589 8.941 |
expression:C(dose)[T.1] | -62.3950 | 54.860 | -1.137 | 0.280 | -183.142 58.352 |
Omnibus: | 0.767 | Durbin-Watson: | 1.796 |
Prob(Omnibus): | 0.682 | Jarque-Bera (JB): | 0.692 |
Skew: | -0.434 | Prob(JB): | 0.708 |
Kurtosis: | 2.405 | Cond. No. | 1.14e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.624 |
Model: | OLS | Adj. R-squared: | 0.561 |
Method: | Least Squares | F-statistic: | 9.960 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00282 |
Time: | 04:52:31 | Log-Likelihood: | -67.963 |
No. Observations: | 15 | AIC: | 141.9 |
Df Residuals: | 12 | BIC: | 144.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 553.5839 | 205.748 | 2.691 | 0.020 | 105.298 1001.870 |
C(dose)[T.1] | 57.5571 | 13.470 | 4.273 | 0.001 | 28.208 86.907 |
expression | -46.4846 | 19.652 | -2.365 | 0.036 | -89.303 -3.667 |
Omnibus: | 1.089 | Durbin-Watson: | 1.806 |
Prob(Omnibus): | 0.580 | Jarque-Bera (JB): | 0.870 |
Skew: | -0.524 | Prob(JB): | 0.647 |
Kurtosis: | 2.456 | Cond. No. | 339. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:52:31 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.052 |
Model: | OLS | Adj. R-squared: | -0.021 |
Method: | Least Squares | F-statistic: | 0.7143 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.413 |
Time: | 04:52:31 | Log-Likelihood: | -74.899 |
No. Observations: | 15 | AIC: | 153.8 |
Df Residuals: | 13 | BIC: | 155.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 351.7313 | 305.505 | 1.151 | 0.270 | -308.272 1011.735 |
expression | -24.4510 | 28.931 | -0.845 | 0.413 | -86.952 38.050 |
Omnibus: | 2.568 | Durbin-Watson: | 2.012 |
Prob(Omnibus): | 0.277 | Jarque-Bera (JB): | 1.246 |
Skew: | 0.334 | Prob(JB): | 0.536 |
Kurtosis: | 1.756 | Cond. No. | 329. |