AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.212 0.650 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.600
Method: Least Squares F-statistic: 12.02
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.000122
Time: 21:22:29 Log-Likelihood: -100.87
No. Observations: 23 AIC: 209.7
Df Residuals: 19 BIC: 214.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 28.4648 249.226 0.114 0.910 -493.170 550.100
C(dose)[T.1] -84.3757 385.052 -0.219 0.829 -890.299 721.548
expression 2.6434 25.584 0.103 0.919 -50.903 56.190
expression:C(dose)[T.1] 13.1267 38.158 0.344 0.735 -66.739 92.993
Omnibus: 0.047 Durbin-Watson: 1.882
Prob(Omnibus): 0.977 Jarque-Bera (JB): 0.259
Skew: 0.046 Prob(JB): 0.878
Kurtosis: 2.488 Cond. No. 1.11e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.80
Date: Mon, 27 Jan 2025 Prob (F-statistic): 2.55e-05
Time: 21:22:29 Log-Likelihood: -100.94
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -28.9996 180.836 -0.160 0.874 -406.216 348.217
C(dose)[T.1] 47.9861 14.533 3.302 0.004 17.672 78.300
expression 8.5441 18.558 0.460 0.650 -30.168 47.256
Omnibus: 0.092 Durbin-Watson: 1.857
Prob(Omnibus): 0.955 Jarque-Bera (JB): 0.311
Skew: 0.060 Prob(JB): 0.856
Kurtosis: 2.443 Cond. No. 422.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 21:22:29 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.463
Model: OLS Adj. R-squared: 0.438
Method: Least Squares F-statistic: 18.14
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.000350
Time: 21:22:29 Log-Likelihood: -105.95
No. Observations: 23 AIC: 215.9
Df Residuals: 21 BIC: 218.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -498.0264 135.763 -3.668 0.001 -780.361 -215.692
expression 57.5546 13.514 4.259 0.000 29.450 85.659
Omnibus: 0.631 Durbin-Watson: 2.075
Prob(Omnibus): 0.730 Jarque-Bera (JB): 0.705
Skew: 0.269 Prob(JB): 0.703
Kurtosis: 2.333 Cond. No. 261.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
25.172 0.000 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.847
Model: OLS Adj. R-squared: 0.805
Method: Least Squares F-statistic: 20.25
Date: Mon, 27 Jan 2025 Prob (F-statistic): 8.73e-05
Time: 21:22:29 Log-Likelihood: -61.235
No. Observations: 15 AIC: 130.5
Df Residuals: 11 BIC: 133.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -299.0766 143.229 -2.088 0.061 -614.322 16.168
C(dose)[T.1] -203.5951 194.912 -1.045 0.319 -632.594 225.404
expression 42.2066 16.478 2.561 0.026 5.939 78.475
expression:C(dose)[T.1] 29.9829 22.550 1.330 0.211 -19.650 79.616
Omnibus: 0.147 Durbin-Watson: 1.260
Prob(Omnibus): 0.929 Jarque-Bera (JB): 0.057
Skew: -0.063 Prob(JB): 0.972
Kurtosis: 2.725 Cond. No. 532.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.822
Model: OLS Adj. R-squared: 0.792
Method: Least Squares F-statistic: 27.72
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.18e-05
Time: 21:22:29 Log-Likelihood: -62.353
No. Observations: 15 AIC: 130.7
Df Residuals: 12 BIC: 132.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -438.0985 100.971 -4.339 0.001 -658.095 -218.102
C(dose)[T.1] 55.2993 9.025 6.127 0.000 35.635 74.964
expression 58.2164 11.603 5.017 0.000 32.935 83.498
Omnibus: 0.232 Durbin-Watson: 1.744
Prob(Omnibus): 0.891 Jarque-Bera (JB): 0.232
Skew: 0.223 Prob(JB): 0.891
Kurtosis: 2.584 Cond. No. 198.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 21:22:29 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.265
Model: OLS Adj. R-squared: 0.209
Method: Least Squares F-statistic: 4.695
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0494
Time: 21:22:29 Log-Likelihood: -72.988
No. Observations: 15 AIC: 150.0
Df Residuals: 13 BIC: 151.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -325.9333 193.845 -1.681 0.117 -744.711 92.844
expression 48.6342 22.445 2.167 0.049 0.144 97.124
Omnibus: 4.123 Durbin-Watson: 2.361
Prob(Omnibus): 0.127 Jarque-Bera (JB): 1.304
Skew: 0.104 Prob(JB): 0.521
Kurtosis: 1.571 Cond. No. 195.