AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.404 | 0.532 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.678 |
Model: | OLS | Adj. R-squared: | 0.627 |
Method: | Least Squares | F-statistic: | 13.34 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.41e-05 |
Time: | 04:31:04 | Log-Likelihood: | -100.07 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 19 | BIC: | 212.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -165.0590 | 180.213 | -0.916 | 0.371 | -542.249 212.131 |
C(dose)[T.1] | 374.1484 | 278.709 | 1.342 | 0.195 | -209.196 957.493 |
expression | 26.5178 | 21.783 | 1.217 | 0.238 | -19.074 72.110 |
expression:C(dose)[T.1] | -39.2550 | 34.425 | -1.140 | 0.268 | -111.307 32.797 |
Omnibus: | 0.589 | Durbin-Watson: | 2.098 |
Prob(Omnibus): | 0.745 | Jarque-Bera (JB): | 0.624 |
Skew: | -0.076 | Prob(JB): | 0.732 |
Kurtosis: | 2.207 | Cond. No. | 663. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 19.07 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.32e-05 |
Time: | 04:31:04 | Log-Likelihood: | -100.83 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 20 | BIC: | 211.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -35.0998 | 140.643 | -0.250 | 0.805 | -328.475 258.276 |
C(dose)[T.1] | 56.5385 | 10.038 | 5.633 | 0.000 | 35.600 77.477 |
expression | 10.8008 | 16.994 | 0.636 | 0.532 | -24.647 46.249 |
Omnibus: | 0.572 | Durbin-Watson: | 1.924 |
Prob(Omnibus): | 0.751 | Jarque-Bera (JB): | 0.609 |
Skew: | 0.001 | Prob(JB): | 0.738 |
Kurtosis: | 2.203 | Cond. No. | 268. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:31:04 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.110 |
Model: | OLS | Adj. R-squared: | 0.068 |
Method: | Least Squares | F-statistic: | 2.604 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.121 |
Time: | 04:31:04 | Log-Likelihood: | -111.76 |
No. Observations: | 23 | AIC: | 227.5 |
Df Residuals: | 21 | BIC: | 229.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 382.2811 | 187.606 | 2.038 | 0.054 | -7.867 772.429 |
expression | -37.2298 | 23.069 | -1.614 | 0.121 | -85.205 10.745 |
Omnibus: | 1.615 | Durbin-Watson: | 2.399 |
Prob(Omnibus): | 0.446 | Jarque-Bera (JB): | 0.967 |
Skew: | 0.037 | Prob(JB): | 0.617 |
Kurtosis: | 1.998 | Cond. No. | 228. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.005 | 0.943 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.482 |
Model: | OLS | Adj. R-squared: | 0.341 |
Method: | Least Squares | F-statistic: | 3.410 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0567 |
Time: | 04:31:04 | Log-Likelihood: | -70.368 |
No. Observations: | 15 | AIC: | 148.7 |
Df Residuals: | 11 | BIC: | 151.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 157.2215 | 188.423 | 0.834 | 0.422 | -257.495 571.938 |
C(dose)[T.1] | -260.8762 | 371.161 | -0.703 | 0.497 | -1077.796 556.044 |
expression | -10.3139 | 21.602 | -0.477 | 0.642 | -57.859 37.231 |
expression:C(dose)[T.1] | 36.3636 | 43.532 | 0.835 | 0.421 | -59.449 132.176 |
Omnibus: | 1.749 | Durbin-Watson: | 0.917 |
Prob(Omnibus): | 0.417 | Jarque-Bera (JB): | 1.390 |
Skew: | -0.638 | Prob(JB): | 0.499 |
Kurtosis: | 2.228 | Cond. No. | 487. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.890 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 04:31:04 | Log-Likelihood: | -70.830 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 79.2666 | 161.615 | 0.490 | 0.633 | -272.863 431.396 |
C(dose)[T.1] | 48.8567 | 16.402 | 2.979 | 0.012 | 13.120 84.594 |
expression | -1.3598 | 18.517 | -0.073 | 0.943 | -41.704 38.985 |
Omnibus: | 2.748 | Durbin-Watson: | 0.833 |
Prob(Omnibus): | 0.253 | Jarque-Bera (JB): | 1.871 |
Skew: | -0.847 | Prob(JB): | 0.392 |
Kurtosis: | 2.643 | Cond. No. | 179. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:31:04 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.042 |
Model: | OLS | Adj. R-squared: | -0.032 |
Method: | Least Squares | F-statistic: | 0.5648 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.466 |
Time: | 04:31:04 | Log-Likelihood: | -74.981 |
No. Observations: | 15 | AIC: | 154.0 |
Df Residuals: | 13 | BIC: | 155.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 238.6947 | 193.229 | 1.235 | 0.239 | -178.751 656.140 |
expression | -16.9174 | 22.510 | -0.752 | 0.466 | -65.547 31.713 |
Omnibus: | 0.988 | Durbin-Watson: | 1.809 |
Prob(Omnibus): | 0.610 | Jarque-Bera (JB): | 0.712 |
Skew: | 0.082 | Prob(JB): | 0.700 |
Kurtosis: | 1.945 | Cond. No. | 169. |