AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.408 0.530 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.602
Method: Least Squares F-statistic: 12.08
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000118
Time: 04:50:37 Log-Likelihood: -100.83
No. Observations: 23 AIC: 209.7
Df Residuals: 19 BIC: 214.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 29.2815 61.889 0.473 0.642 -100.255 158.817
C(dose)[T.1] 47.0547 90.448 0.520 0.609 -142.255 236.365
expression 4.1457 10.242 0.405 0.690 -17.291 25.583
expression:C(dose)[T.1] 0.6379 14.358 0.044 0.965 -29.413 30.689
Omnibus: 0.138 Durbin-Watson: 1.981
Prob(Omnibus): 0.933 Jarque-Bera (JB): 0.348
Skew: -0.093 Prob(JB): 0.840
Kurtosis: 2.427 Cond. No. 171.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.08
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.32e-05
Time: 04:50:38 Log-Likelihood: -100.83
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 27.3296 42.492 0.643 0.527 -61.308 115.967
C(dose)[T.1] 51.0507 9.390 5.437 0.000 31.463 70.638
expression 4.4704 6.996 0.639 0.530 -10.124 19.064
Omnibus: 0.156 Durbin-Watson: 1.985
Prob(Omnibus): 0.925 Jarque-Bera (JB): 0.367
Skew: -0.083 Prob(JB): 0.832
Kurtosis: 2.404 Cond. No. 63.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:50:38 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.148
Model: OLS Adj. R-squared: 0.107
Method: Least Squares F-statistic: 3.643
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0701
Time: 04:50:38 Log-Likelihood: -111.27
No. Observations: 23 AIC: 226.5
Df Residuals: 21 BIC: 228.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -38.9504 62.531 -0.623 0.540 -168.991 91.091
expression 18.9649 9.937 1.909 0.070 -1.699 39.629
Omnibus: 4.464 Durbin-Watson: 2.652
Prob(Omnibus): 0.107 Jarque-Bera (JB): 1.557
Skew: 0.098 Prob(JB): 0.459
Kurtosis: 1.740 Cond. No. 60.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.523 0.483 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.524
Model: OLS Adj. R-squared: 0.395
Method: Least Squares F-statistic: 4.043
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0366
Time: 04:50:38 Log-Likelihood: -69.726
No. Observations: 15 AIC: 147.5
Df Residuals: 11 BIC: 150.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 150.2350 66.887 2.246 0.046 3.018 297.452
C(dose)[T.1] -68.1086 107.139 -0.636 0.538 -303.919 167.702
expression -14.7194 11.723 -1.256 0.235 -40.522 11.083
expression:C(dose)[T.1] 20.9069 18.954 1.103 0.294 -20.811 62.625
Omnibus: 3.019 Durbin-Watson: 1.155
Prob(Omnibus): 0.221 Jarque-Bera (JB): 1.644
Skew: -0.811 Prob(JB): 0.440
Kurtosis: 3.037 Cond. No. 104.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.472
Model: OLS Adj. R-squared: 0.384
Method: Least Squares F-statistic: 5.359
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0217
Time: 04:50:38 Log-Likelihood: -70.513
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 105.2425 53.486 1.968 0.073 -11.293 221.778
C(dose)[T.1] 48.8595 15.415 3.170 0.008 15.274 82.445
expression -6.7217 9.295 -0.723 0.483 -26.973 13.530
Omnibus: 2.487 Durbin-Watson: 0.988
Prob(Omnibus): 0.288 Jarque-Bera (JB): 1.714
Skew: -0.804 Prob(JB): 0.424
Kurtosis: 2.608 Cond. No. 40.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:50:38 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.030
Model: OLS Adj. R-squared: -0.045
Method: Least Squares F-statistic: 0.3958
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.540
Time: 04:50:38 Log-Likelihood: -75.075
No. Observations: 15 AIC: 154.2
Df Residuals: 13 BIC: 155.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 136.2863 68.476 1.990 0.068 -11.646 284.219
expression -7.6121 12.099 -0.629 0.540 -33.750 18.526
Omnibus: 1.589 Durbin-Watson: 1.779
Prob(Omnibus): 0.452 Jarque-Bera (JB): 0.963
Skew: 0.264 Prob(JB): 0.618
Kurtosis: 1.877 Cond. No. 39.9