AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.811 0.193 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.752
Model: OLS Adj. R-squared: 0.713
Method: Least Squares F-statistic: 19.23
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.58e-06
Time: 03:59:53 Log-Likelihood: -97.060
No. Observations: 23 AIC: 202.1
Df Residuals: 19 BIC: 206.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -72.6926 238.617 -0.305 0.764 -572.124 426.739
C(dose)[T.1] 905.6296 354.901 2.552 0.019 162.812 1648.447
expression 12.6509 23.782 0.532 0.601 -37.126 62.428
expression:C(dose)[T.1] -83.0585 34.864 -2.382 0.028 -156.030 -10.087
Omnibus: 0.175 Durbin-Watson: 2.021
Prob(Omnibus): 0.916 Jarque-Bera (JB): 0.047
Skew: 0.081 Prob(JB): 0.977
Kurtosis: 2.847 Cond. No. 1.23e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.678
Model: OLS Adj. R-squared: 0.646
Method: Least Squares F-statistic: 21.08
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.19e-05
Time: 03:59:53 Log-Likelihood: -100.07
No. Observations: 23 AIC: 206.1
Df Residuals: 20 BIC: 209.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 314.9870 193.848 1.625 0.120 -89.372 719.346
C(dose)[T.1] 60.4016 9.903 6.099 0.000 39.744 81.060
expression -25.9973 19.316 -1.346 0.193 -66.290 14.296
Omnibus: 0.216 Durbin-Watson: 1.918
Prob(Omnibus): 0.898 Jarque-Bera (JB): 0.405
Skew: -0.144 Prob(JB): 0.817
Kurtosis: 2.418 Cond. No. 475.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:59:53 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.080
Model: OLS Adj. R-squared: 0.036
Method: Least Squares F-statistic: 1.818
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.192
Time: 03:59:53 Log-Likelihood: -112.15
No. Observations: 23 AIC: 228.3
Df Residuals: 21 BIC: 230.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -290.6130 274.769 -1.058 0.302 -862.027 280.801
expression 36.4464 27.033 1.348 0.192 -19.772 92.665
Omnibus: 2.631 Durbin-Watson: 2.318
Prob(Omnibus): 0.268 Jarque-Bera (JB): 1.891
Skew: 0.525 Prob(JB): 0.388
Kurtosis: 2.067 Cond. No. 407.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.148 0.707 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.530
Model: OLS Adj. R-squared: 0.401
Method: Least Squares F-statistic: 4.127
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0346
Time: 03:59:53 Log-Likelihood: -69.645
No. Observations: 15 AIC: 147.3
Df Residuals: 11 BIC: 150.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -477.1217 561.093 -0.850 0.413 -1712.079 757.836
C(dose)[T.1] 1679.1708 1248.913 1.345 0.206 -1069.668 4428.009
expression 56.7396 58.452 0.971 0.353 -71.912 185.391
expression:C(dose)[T.1] -162.8010 123.703 -1.316 0.215 -435.070 109.468
Omnibus: 2.662 Durbin-Watson: 0.819
Prob(Omnibus): 0.264 Jarque-Bera (JB): 1.278
Skew: -0.346 Prob(JB): 0.528
Kurtosis: 1.749 Cond. No. 2.00e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.365
Method: Least Squares F-statistic: 5.019
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0261
Time: 03:59:53 Log-Likelihood: -70.741
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -128.2694 509.392 -0.252 0.805 -1238.139 981.600
C(dose)[T.1] 36.2165 37.224 0.973 0.350 -44.888 117.321
expression 20.3908 53.063 0.384 0.707 -95.223 136.005
Omnibus: 3.221 Durbin-Watson: 0.699
Prob(Omnibus): 0.200 Jarque-Bera (JB): 1.961
Skew: -0.884 Prob(JB): 0.375
Kurtosis: 2.887 Cond. No. 658.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:59:53 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.413
Model: OLS Adj. R-squared: 0.367
Method: Least Squares F-statistic: 9.128
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00983
Time: 03:59:53 Log-Likelihood: -71.311
No. Observations: 15 AIC: 146.6
Df Residuals: 13 BIC: 148.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -574.4572 221.273 -2.596 0.022 -1052.489 -96.426
expression 67.2369 22.254 3.021 0.010 19.160 115.314
Omnibus: 3.962 Durbin-Watson: 0.518
Prob(Omnibus): 0.138 Jarque-Bera (JB): 2.084
Skew: -0.903 Prob(JB): 0.353
Kurtosis: 3.264 Cond. No. 285.