AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.001 | 0.976 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.596 |
Method: | Least Squares | F-statistic: | 11.82 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000135 |
Time: | 05:26:44 | Log-Likelihood: | -101.00 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 81.7904 | 137.908 | 0.593 | 0.560 | -206.854 370.435 |
C(dose)[T.1] | -28.4567 | 250.111 | -0.114 | 0.911 | -551.944 495.031 |
expression | -3.8826 | 19.393 | -0.200 | 0.843 | -44.473 36.708 |
expression:C(dose)[T.1] | 11.8350 | 36.222 | 0.327 | 0.747 | -63.978 87.648 |
Omnibus: | 0.048 | Durbin-Watson: | 1.801 |
Prob(Omnibus): | 0.976 | Jarque-Bera (JB): | 0.265 |
Skew: | 0.033 | Prob(JB): | 0.876 |
Kurtosis: | 2.479 | Cond. No. | 471. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 05:26:44 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 57.6899 | 113.892 | 0.507 | 0.618 | -179.885 295.265 |
C(dose)[T.1] | 53.1965 | 9.900 | 5.374 | 0.000 | 32.546 73.847 |
expression | -0.4901 | 16.010 | -0.031 | 0.976 | -33.885 32.905 |
Omnibus: | 0.319 | Durbin-Watson: | 1.887 |
Prob(Omnibus): | 0.852 | Jarque-Bera (JB): | 0.484 |
Skew: | 0.065 | Prob(JB): | 0.785 |
Kurtosis: | 2.301 | Cond. No. | 186. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:26:44 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.142 |
Model: | OLS | Adj. R-squared: | 0.102 |
Method: | Least Squares | F-statistic: | 3.487 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0759 |
Time: | 05:26:44 | Log-Likelihood: | -111.34 |
No. Observations: | 23 | AIC: | 226.7 |
Df Residuals: | 21 | BIC: | 228.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 361.2000 | 150.881 | 2.394 | 0.026 | 47.426 674.974 |
expression | -40.4039 | 21.636 | -1.867 | 0.076 | -85.399 4.591 |
Omnibus: | 1.952 | Durbin-Watson: | 2.211 |
Prob(Omnibus): | 0.377 | Jarque-Bera (JB): | 1.306 |
Skew: | 0.328 | Prob(JB): | 0.520 |
Kurtosis: | 2.035 | Cond. No. | 161. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.149 | 0.707 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.461 |
Model: | OLS | Adj. R-squared: | 0.314 |
Method: | Least Squares | F-statistic: | 3.137 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0693 |
Time: | 05:26:44 | Log-Likelihood: | -70.664 |
No. Observations: | 15 | AIC: | 149.3 |
Df Residuals: | 11 | BIC: | 152.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 75.3955 | 188.551 | 0.400 | 0.697 | -339.603 490.395 |
C(dose)[T.1] | 135.0106 | 266.494 | 0.507 | 0.622 | -451.538 721.559 |
expression | -1.0294 | 24.315 | -0.042 | 0.967 | -54.547 52.488 |
expression:C(dose)[T.1] | -11.9838 | 35.662 | -0.336 | 0.743 | -90.475 66.508 |
Omnibus: | 2.136 | Durbin-Watson: | 0.821 |
Prob(Omnibus): | 0.344 | Jarque-Bera (JB): | 1.655 |
Skew: | -0.714 | Prob(JB): | 0.437 |
Kurtosis: | 2.220 | Cond. No. | 327. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.456 |
Model: | OLS | Adj. R-squared: | 0.365 |
Method: | Least Squares | F-statistic: | 5.020 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0261 |
Time: | 05:26:44 | Log-Likelihood: | -70.741 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 118.5108 | 132.961 | 0.891 | 0.390 | -171.186 408.208 |
C(dose)[T.1] | 45.6814 | 18.105 | 2.523 | 0.027 | 6.234 85.129 |
expression | -6.6005 | 17.117 | -0.386 | 0.707 | -43.895 30.694 |
Omnibus: | 2.551 | Durbin-Watson: | 0.812 |
Prob(Omnibus): | 0.279 | Jarque-Bera (JB): | 1.893 |
Skew: | -0.823 | Prob(JB): | 0.388 |
Kurtosis: | 2.433 | Cond. No. | 130. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:26:45 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.167 |
Model: | OLS | Adj. R-squared: | 0.103 |
Method: | Least Squares | F-statistic: | 2.600 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.131 |
Time: | 05:26:45 | Log-Likelihood: | -73.933 |
No. Observations: | 15 | AIC: | 151.9 |
Df Residuals: | 13 | BIC: | 153.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 304.9762 | 131.378 | 2.321 | 0.037 | 21.152 588.800 |
expression | -28.3444 | 17.579 | -1.612 | 0.131 | -66.321 9.632 |
Omnibus: | 0.073 | Durbin-Watson: | 1.387 |
Prob(Omnibus): | 0.964 | Jarque-Bera (JB): | 0.242 |
Skew: | -0.130 | Prob(JB): | 0.886 |
Kurtosis: | 2.435 | Cond. No. | 108. |