AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.281 | 0.602 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.664 |
Model: | OLS | Adj. R-squared: | 0.611 |
Method: | Least Squares | F-statistic: | 12.54 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.43e-05 |
Time: | 04:18:28 | Log-Likelihood: | -100.55 |
No. Observations: | 23 | AIC: | 209.1 |
Df Residuals: | 19 | BIC: | 213.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 45.3283 | 173.400 | 0.261 | 0.797 | -317.601 408.258 |
C(dose)[T.1] | 279.3164 | 290.826 | 0.960 | 0.349 | -329.389 888.022 |
expression | 0.9375 | 18.296 | 0.051 | 0.960 | -37.357 39.232 |
expression:C(dose)[T.1] | -23.1761 | 30.105 | -0.770 | 0.451 | -86.187 39.835 |
Omnibus: | 1.258 | Durbin-Watson: | 1.837 |
Prob(Omnibus): | 0.533 | Jarque-Bera (JB): | 0.881 |
Skew: | 0.099 | Prob(JB): | 0.644 |
Kurtosis: | 2.062 | Cond. No. | 789. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 18.89 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.46e-05 |
Time: | 04:18:28 | Log-Likelihood: | -100.90 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 126.4056 | 136.343 | 0.927 | 0.365 | -158.000 410.811 |
C(dose)[T.1] | 55.5528 | 9.660 | 5.751 | 0.000 | 35.402 75.703 |
expression | -7.6225 | 14.381 | -0.530 | 0.602 | -37.620 22.375 |
Omnibus: | 0.478 | Durbin-Watson: | 1.818 |
Prob(Omnibus): | 0.787 | Jarque-Bera (JB): | 0.567 |
Skew: | 0.042 | Prob(JB): | 0.753 |
Kurtosis: | 2.235 | Cond. No. | 305. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:18:28 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.082 |
Model: | OLS | Adj. R-squared: | 0.038 |
Method: | Least Squares | F-statistic: | 1.867 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.186 |
Time: | 04:18:28 | Log-Likelihood: | -112.13 |
No. Observations: | 23 | AIC: | 228.3 |
Df Residuals: | 21 | BIC: | 230.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -190.9500 | 198.198 | -0.963 | 0.346 | -603.124 221.224 |
expression | 28.1634 | 20.610 | 1.366 | 0.186 | -14.698 71.025 |
Omnibus: | 2.672 | Durbin-Watson: | 2.686 |
Prob(Omnibus): | 0.263 | Jarque-Bera (JB): | 1.489 |
Skew: | 0.324 | Prob(JB): | 0.475 |
Kurtosis: | 1.935 | Cond. No. | 279. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.467 | 0.142 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.547 |
Model: | OLS | Adj. R-squared: | 0.424 |
Method: | Least Squares | F-statistic: | 4.434 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0283 |
Time: | 04:18:28 | Log-Likelihood: | -69.355 |
No. Observations: | 15 | AIC: | 146.7 |
Df Residuals: | 11 | BIC: | 149.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -342.5777 | 514.242 | -0.666 | 0.519 | -1474.418 789.262 |
C(dose)[T.1] | 241.4015 | 539.916 | 0.447 | 0.663 | -946.946 1429.749 |
expression | 44.8029 | 56.181 | 0.797 | 0.442 | -78.850 168.456 |
expression:C(dose)[T.1] | -19.7419 | 59.272 | -0.333 | 0.745 | -150.199 110.716 |
Omnibus: | 2.484 | Durbin-Watson: | 1.258 |
Prob(Omnibus): | 0.289 | Jarque-Bera (JB): | 0.820 |
Skew: | -0.512 | Prob(JB): | 0.664 |
Kurtosis: | 3.512 | Cond. No. | 1.03e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.543 |
Model: | OLS | Adj. R-squared: | 0.467 |
Method: | Least Squares | F-statistic: | 7.123 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00914 |
Time: | 04:18:29 | Log-Likelihood: | -69.431 |
No. Observations: | 15 | AIC: | 144.9 |
Df Residuals: | 12 | BIC: | 147.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -180.2693 | 158.038 | -1.141 | 0.276 | -524.605 164.066 |
C(dose)[T.1] | 61.6609 | 16.385 | 3.763 | 0.003 | 25.962 97.360 |
expression | 27.0669 | 17.231 | 1.571 | 0.142 | -10.477 64.611 |
Omnibus: | 2.666 | Durbin-Watson: | 1.237 |
Prob(Omnibus): | 0.264 | Jarque-Bera (JB): | 0.877 |
Skew: | -0.510 | Prob(JB): | 0.645 |
Kurtosis: | 3.601 | Cond. No. | 200. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:18:29 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.003 |
Model: | OLS | Adj. R-squared: | -0.074 |
Method: | Least Squares | F-statistic: | 0.04117 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.842 |
Time: | 04:18:29 | Log-Likelihood: | -75.276 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 132.3152 | 190.737 | 0.694 | 0.500 | -279.747 544.378 |
expression | -4.3397 | 21.387 | -0.203 | 0.842 | -50.544 41.864 |
Omnibus: | 0.700 | Durbin-Watson: | 1.561 |
Prob(Omnibus): | 0.705 | Jarque-Bera (JB): | 0.616 |
Skew: | 0.050 | Prob(JB): | 0.735 |
Kurtosis: | 2.012 | Cond. No. | 170. |