AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.002 | 0.961 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.596 |
Method: | Least Squares | F-statistic: | 11.82 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000135 |
Time: | 22:58:24 | Log-Likelihood: | -101.00 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 30.5297 | 152.277 | 0.200 | 0.843 | -288.189 349.248 |
C(dose)[T.1] | 131.2394 | 240.845 | 0.545 | 0.592 | -372.855 635.333 |
expression | 3.0438 | 19.558 | 0.156 | 0.878 | -37.892 43.979 |
expression:C(dose)[T.1] | -10.7239 | 32.866 | -0.326 | 0.748 | -79.513 58.065 |
Omnibus: | 0.771 | Durbin-Watson: | 1.896 |
Prob(Omnibus): | 0.680 | Jarque-Bera (JB): | 0.710 |
Skew: | 0.105 | Prob(JB): | 0.701 |
Kurtosis: | 2.166 | Cond. No. | 495. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.83e-05 |
Time: | 22:58:24 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 60.0729 | 119.668 | 0.502 | 0.621 | -189.551 309.697 |
C(dose)[T.1] | 52.7950 | 14.106 | 3.743 | 0.001 | 23.371 82.219 |
expression | -0.7539 | 15.363 | -0.049 | 0.961 | -32.800 31.293 |
Omnibus: | 0.319 | Durbin-Watson: | 1.891 |
Prob(Omnibus): | 0.853 | Jarque-Bera (JB): | 0.484 |
Skew: | 0.071 | Prob(JB): | 0.785 |
Kurtosis: | 2.304 | Cond. No. | 208. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:58:24 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.403 |
Model: | OLS | Adj. R-squared: | 0.375 |
Method: | Least Squares | F-statistic: | 14.19 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00113 |
Time: | 22:58:24 | Log-Likelihood: | -107.17 |
No. Observations: | 23 | AIC: | 218.3 |
Df Residuals: | 21 | BIC: | 220.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 420.2051 | 90.547 | 4.641 | 0.000 | 231.903 608.507 |
expression | -45.7924 | 12.155 | -3.768 | 0.001 | -71.069 -20.516 |
Omnibus: | 2.048 | Durbin-Watson: | 2.141 |
Prob(Omnibus): | 0.359 | Jarque-Bera (JB): | 1.700 |
Skew: | 0.540 | Prob(JB): | 0.427 |
Kurtosis: | 2.222 | Cond. No. | 123. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.652 | 0.435 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.501 |
Model: | OLS | Adj. R-squared: | 0.365 |
Method: | Least Squares | F-statistic: | 3.683 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0467 |
Time: | 22:58:24 | Log-Likelihood: | -70.084 |
No. Observations: | 15 | AIC: | 148.2 |
Df Residuals: | 11 | BIC: | 151.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -337.4331 | 377.555 | -0.894 | 0.391 | -1168.426 493.560 |
C(dose)[T.1] | 482.2917 | 596.648 | 0.808 | 0.436 | -830.922 1795.505 |
expression | 47.8518 | 44.604 | 1.073 | 0.306 | -50.321 146.024 |
expression:C(dose)[T.1] | -51.1809 | 70.395 | -0.727 | 0.482 | -206.118 103.757 |
Omnibus: | 2.092 | Durbin-Watson: | 0.735 |
Prob(Omnibus): | 0.351 | Jarque-Bera (JB): | 1.407 |
Skew: | -0.728 | Prob(JB): | 0.495 |
Kurtosis: | 2.638 | Cond. No. | 837. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.477 |
Model: | OLS | Adj. R-squared: | 0.390 |
Method: | Least Squares | F-statistic: | 5.476 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0204 |
Time: | 22:58:24 | Log-Likelihood: | -70.436 |
No. Observations: | 15 | AIC: | 146.9 |
Df Residuals: | 12 | BIC: | 149.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -163.5794 | 286.384 | -0.571 | 0.578 | -787.557 460.399 |
C(dose)[T.1] | 48.6439 | 15.344 | 3.170 | 0.008 | 15.212 82.076 |
expression | 27.3035 | 33.823 | 0.807 | 0.435 | -46.390 100.997 |
Omnibus: | 3.080 | Durbin-Watson: | 0.677 |
Prob(Omnibus): | 0.214 | Jarque-Bera (JB): | 1.897 |
Skew: | -0.868 | Prob(JB): | 0.387 |
Kurtosis: | 2.851 | Cond. No. | 322. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:58:24 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.039 |
Model: | OLS | Adj. R-squared: | -0.035 |
Method: | Least Squares | F-statistic: | 0.5316 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.479 |
Time: | 22:58:24 | Log-Likelihood: | -74.999 |
No. Observations: | 15 | AIC: | 154.0 |
Df Residuals: | 13 | BIC: | 155.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -178.1524 | 372.929 | -0.478 | 0.641 | -983.817 627.513 |
expression | 32.0862 | 44.006 | 0.729 | 0.479 | -62.983 127.155 |
Omnibus: | 2.751 | Durbin-Watson: | 1.565 |
Prob(Omnibus): | 0.253 | Jarque-Bera (JB): | 1.154 |
Skew: | 0.201 | Prob(JB): | 0.562 |
Kurtosis: | 1.702 | Cond. No. | 322. |