AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.298 0.145 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.698
Model: OLS Adj. R-squared: 0.651
Method: Least Squares F-statistic: 14.66
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.50e-05
Time: 22:51:23 Log-Likelihood: -99.321
No. Observations: 23 AIC: 206.6
Df Residuals: 19 BIC: 211.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 55.4771 117.453 0.472 0.642 -190.355 301.310
C(dose)[T.1] 173.6371 136.341 1.274 0.218 -111.727 459.002
expression -0.2125 19.652 -0.011 0.991 -41.344 40.919
expression:C(dose)[T.1] -20.9671 23.035 -0.910 0.374 -69.179 27.245
Omnibus: 0.794 Durbin-Watson: 1.970
Prob(Omnibus): 0.672 Jarque-Bera (JB): 0.725
Skew: 0.122 Prob(JB): 0.696
Kurtosis: 2.165 Cond. No. 283.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.685
Model: OLS Adj. R-squared: 0.654
Method: Least Squares F-statistic: 21.77
Date: Thu, 03 Apr 2025 Prob (F-statistic): 9.55e-06
Time: 22:51:23 Log-Likelihood: -99.812
No. Observations: 23 AIC: 205.6
Df Residuals: 20 BIC: 209.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 146.5783 61.205 2.395 0.027 18.907 274.249
C(dose)[T.1] 49.7845 8.630 5.769 0.000 31.783 67.786
expression -15.4737 10.208 -1.516 0.145 -36.767 5.819
Omnibus: 1.129 Durbin-Watson: 1.924
Prob(Omnibus): 0.569 Jarque-Bera (JB): 0.904
Skew: 0.211 Prob(JB): 0.636
Kurtosis: 2.125 Cond. No. 89.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:51:23 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.161
Model: OLS Adj. R-squared: 0.122
Method: Least Squares F-statistic: 4.043
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0574
Time: 22:51:23 Log-Likelihood: -111.08
No. Observations: 23 AIC: 226.2
Df Residuals: 21 BIC: 228.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 264.0920 91.931 2.873 0.009 72.912 455.272
expression -31.4651 15.648 -2.011 0.057 -64.007 1.077
Omnibus: 3.514 Durbin-Watson: 2.325
Prob(Omnibus): 0.173 Jarque-Bera (JB): 1.419
Skew: 0.125 Prob(JB): 0.492
Kurtosis: 1.809 Cond. No. 84.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.024 0.879 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.497
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 3.622
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0488
Time: 22:51:23 Log-Likelihood: -70.147
No. Observations: 15 AIC: 148.3
Df Residuals: 11 BIC: 151.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 168.5774 140.697 1.198 0.256 -141.095 478.250
C(dose)[T.1] -180.7713 225.916 -0.800 0.441 -678.010 316.467
expression -16.6016 23.016 -0.721 0.486 -67.259 34.056
expression:C(dose)[T.1] 39.7773 39.208 1.015 0.332 -46.518 126.073
Omnibus: 1.248 Durbin-Watson: 0.711
Prob(Omnibus): 0.536 Jarque-Bera (JB): 1.031
Skew: -0.553 Prob(JB): 0.597
Kurtosis: 2.348 Cond. No. 215.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.907
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0277
Time: 22:51:23 Log-Likelihood: -70.818
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 85.0631 114.242 0.745 0.471 -163.849 333.975
C(dose)[T.1] 47.6499 18.617 2.559 0.025 7.086 88.214
expression -2.8944 18.656 -0.155 0.879 -43.542 37.753
Omnibus: 2.553 Durbin-Watson: 0.771
Prob(Omnibus): 0.279 Jarque-Bera (JB): 1.762
Skew: -0.816 Prob(JB): 0.414
Kurtosis: 2.607 Cond. No. 88.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:51:23 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.150
Model: OLS Adj. R-squared: 0.084
Method: Least Squares F-statistic: 2.286
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.154
Time: 22:51:23 Log-Likelihood: -74.085
No. Observations: 15 AIC: 152.2
Df Residuals: 13 BIC: 153.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 258.9549 109.712 2.360 0.035 21.937 495.972
expression -28.4601 18.822 -1.512 0.154 -69.122 12.202
Omnibus: 2.138 Durbin-Watson: 0.917
Prob(Omnibus): 0.343 Jarque-Bera (JB): 1.019
Skew: 0.168 Prob(JB): 0.601
Kurtosis: 1.768 Cond. No. 70.2