AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.223 | 0.642 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.685 |
Model: | OLS | Adj. R-squared: | 0.635 |
Method: | Least Squares | F-statistic: | 13.76 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.26e-05 |
Time: | 03:51:01 | Log-Likelihood: | -99.827 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 19 | BIC: | 212.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -53.0598 | 130.854 | -0.405 | 0.690 | -326.940 220.820 |
C(dose)[T.1] | 285.6746 | 166.472 | 1.716 | 0.102 | -62.754 634.104 |
expression | 14.4596 | 17.621 | 0.821 | 0.422 | -22.421 51.341 |
expression:C(dose)[T.1] | -30.5162 | 22.009 | -1.387 | 0.182 | -76.582 15.550 |
Omnibus: | 1.215 | Durbin-Watson: | 1.830 |
Prob(Omnibus): | 0.545 | Jarque-Bera (JB): | 0.855 |
Skew: | 0.060 | Prob(JB): | 0.652 |
Kurtosis: | 2.063 | Cond. No. | 418. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.653 |
Model: | OLS | Adj. R-squared: | 0.618 |
Method: | Least Squares | F-statistic: | 18.81 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.54e-05 |
Time: | 03:51:01 | Log-Likelihood: | -100.94 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 20 | BIC: | 211.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 92.0460 | 80.339 | 1.146 | 0.265 | -75.538 259.630 |
C(dose)[T.1] | 55.2284 | 9.597 | 5.755 | 0.000 | 35.210 75.247 |
expression | -5.1005 | 10.799 | -0.472 | 0.642 | -27.627 17.426 |
Omnibus: | 0.328 | Durbin-Watson: | 1.859 |
Prob(Omnibus): | 0.849 | Jarque-Bera (JB): | 0.491 |
Skew: | 0.087 | Prob(JB): | 0.782 |
Kurtosis: | 2.306 | Cond. No. | 143. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:51:01 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.078 |
Model: | OLS | Adj. R-squared: | 0.034 |
Method: | Least Squares | F-statistic: | 1.781 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.196 |
Time: | 03:51:01 | Log-Likelihood: | -112.17 |
No. Observations: | 23 | AIC: | 228.3 |
Df Residuals: | 21 | BIC: | 230.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -78.5105 | 118.763 | -0.661 | 0.516 | -325.491 168.470 |
expression | 20.8309 | 15.609 | 1.335 | 0.196 | -11.629 53.291 |
Omnibus: | 2.380 | Durbin-Watson: | 2.452 |
Prob(Omnibus): | 0.304 | Jarque-Bera (JB): | 1.765 |
Skew: | 0.506 | Prob(JB): | 0.414 |
Kurtosis: | 2.095 | Cond. No. | 133. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.138 | 0.307 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.509 |
Model: | OLS | Adj. R-squared: | 0.375 |
Method: | Least Squares | F-statistic: | 3.805 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0430 |
Time: | 03:51:01 | Log-Likelihood: | -69.961 |
No. Observations: | 15 | AIC: | 147.9 |
Df Residuals: | 11 | BIC: | 150.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -83.3279 | 147.374 | -0.565 | 0.583 | -407.695 241.039 |
C(dose)[T.1] | 146.6540 | 176.577 | 0.831 | 0.424 | -241.990 535.298 |
expression | 19.3321 | 18.842 | 1.026 | 0.327 | -22.140 60.804 |
expression:C(dose)[T.1] | -12.2224 | 22.834 | -0.535 | 0.603 | -62.479 38.034 |
Omnibus: | 1.810 | Durbin-Watson: | 0.902 |
Prob(Omnibus): | 0.404 | Jarque-Bera (JB): | 1.431 |
Skew: | -0.658 | Prob(JB): | 0.489 |
Kurtosis: | 2.255 | Cond. No. | 256. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.497 |
Model: | OLS | Adj. R-squared: | 0.413 |
Method: | Least Squares | F-statistic: | 5.917 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0163 |
Time: | 03:51:01 | Log-Likelihood: | -70.154 |
No. Observations: | 15 | AIC: | 146.3 |
Df Residuals: | 12 | BIC: | 148.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -18.4235 | 81.237 | -0.227 | 0.824 | -195.424 158.577 |
C(dose)[T.1] | 52.5170 | 15.362 | 3.419 | 0.005 | 19.047 85.987 |
expression | 11.0091 | 10.322 | 1.067 | 0.307 | -11.480 33.498 |
Omnibus: | 1.571 | Durbin-Watson: | 0.762 |
Prob(Omnibus): | 0.456 | Jarque-Bera (JB): | 1.268 |
Skew: | -0.588 | Prob(JB): | 0.531 |
Kurtosis: | 2.198 | Cond. No. | 84.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:51:01 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.006 |
Model: | OLS | Adj. R-squared: | -0.070 |
Method: | Least Squares | F-statistic: | 0.07995 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.782 |
Time: | 03:51:01 | Log-Likelihood: | -75.254 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 64.2035 | 104.693 | 0.613 | 0.550 | -161.973 290.380 |
expression | 3.8578 | 13.644 | 0.283 | 0.782 | -25.618 33.333 |
Omnibus: | 0.932 | Durbin-Watson: | 1.672 |
Prob(Omnibus): | 0.628 | Jarque-Bera (JB): | 0.702 |
Skew: | 0.111 | Prob(JB): | 0.704 |
Kurtosis: | 1.963 | Cond. No. | 80.6 |