AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.594 0.450 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.607
Method: Least Squares F-statistic: 12.34
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.000104
Time: 22:00:08 Log-Likelihood: -100.67
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -46.5637 137.169 -0.339 0.738 -333.662 240.535
C(dose)[T.1] 112.1240 182.029 0.616 0.545 -268.868 493.116
expression 12.6908 17.257 0.735 0.471 -23.429 48.811
expression:C(dose)[T.1] -7.2324 23.220 -0.311 0.759 -55.832 41.367
Omnibus: 0.948 Durbin-Watson: 1.819
Prob(Omnibus): 0.623 Jarque-Bera (JB): 0.758
Skew: -0.012 Prob(JB): 0.684
Kurtosis: 2.111 Cond. No. 435.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.625
Method: Least Squares F-statistic: 19.34
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.11e-05
Time: 22:00:08 Log-Likelihood: -100.73
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -14.8415 89.787 -0.165 0.870 -202.134 172.451
C(dose)[T.1] 55.5006 9.087 6.108 0.000 36.546 74.456
expression 8.6959 11.282 0.771 0.450 -14.839 32.230
Omnibus: 1.261 Durbin-Watson: 1.855
Prob(Omnibus): 0.532 Jarque-Bera (JB): 0.866
Skew: 0.047 Prob(JB): 0.648
Kurtosis: 2.054 Cond. No. 166.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 22:00:08 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.023
Model: OLS Adj. R-squared: -0.023
Method: Least Squares F-statistic: 0.5046
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.485
Time: 22:00:08 Log-Likelihood: -112.83
No. Observations: 23 AIC: 229.7
Df Residuals: 21 BIC: 231.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 178.2008 138.827 1.284 0.213 -110.507 466.908
expression -12.5913 17.726 -0.710 0.485 -49.454 24.272
Omnibus: 3.936 Durbin-Watson: 2.505
Prob(Omnibus): 0.140 Jarque-Bera (JB): 1.661
Skew: 0.272 Prob(JB): 0.436
Kurtosis: 1.801 Cond. No. 155.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
6.078 0.030 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.635
Model: OLS Adj. R-squared: 0.535
Method: Least Squares F-statistic: 6.366
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00924
Time: 22:00:08 Log-Likelihood: -67.751
No. Observations: 15 AIC: 143.5
Df Residuals: 11 BIC: 146.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -666.4142 432.819 -1.540 0.152 -1619.041 286.213
C(dose)[T.1] 132.0761 586.133 0.225 0.826 -1157.993 1422.145
expression 85.4687 50.396 1.696 0.118 -25.453 196.390
expression:C(dose)[T.1] -7.6062 69.091 -0.110 0.914 -159.675 144.463
Omnibus: 0.684 Durbin-Watson: 0.823
Prob(Omnibus): 0.710 Jarque-Bera (JB): 0.638
Skew: -0.409 Prob(JB): 0.727
Kurtosis: 2.407 Cond. No. 1.02e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.634
Model: OLS Adj. R-squared: 0.573
Method: Least Squares F-statistic: 10.40
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00240
Time: 22:00:08 Log-Likelihood: -67.759
No. Observations: 15 AIC: 141.5
Df Residuals: 12 BIC: 143.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -631.6673 283.711 -2.226 0.046 -1249.821 -13.513
C(dose)[T.1] 67.5717 14.832 4.556 0.001 35.255 99.888
expression 81.4219 33.025 2.465 0.030 9.466 153.377
Omnibus: 0.654 Durbin-Watson: 0.798
Prob(Omnibus): 0.721 Jarque-Bera (JB): 0.592
Skew: -0.403 Prob(JB): 0.744
Kurtosis: 2.453 Cond. No. 382.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 22:00:08 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.01648
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.900
Time: 22:00:08 Log-Likelihood: -75.291
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 44.4126 383.825 0.116 0.910 -784.791 873.617
expression 5.8180 45.323 0.128 0.900 -92.096 103.732
Omnibus: 0.782 Durbin-Watson: 1.660
Prob(Omnibus): 0.677 Jarque-Bera (JB): 0.649
Skew: 0.086 Prob(JB): 0.723
Kurtosis: 1.996 Cond. No. 325.