AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.027 | 0.872 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.603 |
Method: | Least Squares | F-statistic: | 12.15 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000114 |
Time: | 04:06:40 | Log-Likelihood: | -100.79 |
No. Observations: | 23 | AIC: | 209.6 |
Df Residuals: | 19 | BIC: | 214.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -232.9476 | 633.779 | -0.368 | 0.717 | -1559.462 1093.567 |
C(dose)[T.1] | 556.8284 | 763.500 | 0.729 | 0.475 | -1041.195 2154.852 |
expression | 26.8486 | 59.255 | 0.453 | 0.656 | -97.173 150.870 |
expression:C(dose)[T.1] | -47.6287 | 71.994 | -0.662 | 0.516 | -198.313 103.056 |
Omnibus: | 0.105 | Durbin-Watson: | 1.796 |
Prob(Omnibus): | 0.949 | Jarque-Bera (JB): | 0.327 |
Skew: | -0.045 | Prob(JB): | 0.849 |
Kurtosis: | 2.422 | Cond. No. | 2.57e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.53 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.80e-05 |
Time: | 04:06:40 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 112.1320 | 354.903 | 0.316 | 0.755 | -628.182 852.446 |
C(dose)[T.1] | 51.7956 | 12.884 | 4.020 | 0.001 | 24.921 78.670 |
expression | -5.4158 | 33.178 | -0.163 | 0.872 | -74.624 63.792 |
Omnibus: | 0.229 | Durbin-Watson: | 1.931 |
Prob(Omnibus): | 0.892 | Jarque-Bera (JB): | 0.426 |
Skew: | 0.078 | Prob(JB): | 0.808 |
Kurtosis: | 2.352 | Cond. No. | 865. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:06:40 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.366 |
Model: | OLS | Adj. R-squared: | 0.336 |
Method: | Least Squares | F-statistic: | 12.14 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00221 |
Time: | 04:06:40 | Log-Likelihood: | -107.86 |
No. Observations: | 23 | AIC: | 219.7 |
Df Residuals: | 21 | BIC: | 222.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1169.2708 | 312.785 | 3.738 | 0.001 | 518.798 1819.743 |
expression | -103.1849 | 29.617 | -3.484 | 0.002 | -164.777 -41.593 |
Omnibus: | 3.822 | Durbin-Watson: | 2.641 |
Prob(Omnibus): | 0.148 | Jarque-Bera (JB): | 2.121 |
Skew: | 0.682 | Prob(JB): | 0.346 |
Kurtosis: | 3.593 | Cond. No. | 580. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.055 | 0.067 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.600 |
Model: | OLS | Adj. R-squared: | 0.490 |
Method: | Least Squares | F-statistic: | 5.492 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0149 |
Time: | 04:06:40 | Log-Likelihood: | -68.435 |
No. Observations: | 15 | AIC: | 144.9 |
Df Residuals: | 11 | BIC: | 147.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -139.7968 | 1543.502 | -0.091 | 0.929 | -3537.021 3257.428 |
C(dose)[T.1] | -875.6244 | 1641.038 | -0.534 | 0.604 | -4487.524 2736.275 |
expression | 18.7194 | 139.427 | 0.134 | 0.896 | -288.157 325.596 |
expression:C(dose)[T.1] | 83.8330 | 148.284 | 0.565 | 0.583 | -242.538 410.204 |
Omnibus: | 0.494 | Durbin-Watson: | 1.086 |
Prob(Omnibus): | 0.781 | Jarque-Bera (JB): | 0.519 |
Skew: | -0.345 | Prob(JB): | 0.771 |
Kurtosis: | 2.405 | Cond. No. | 4.11e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.588 |
Model: | OLS | Adj. R-squared: | 0.519 |
Method: | Least Squares | F-statistic: | 8.563 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00489 |
Time: | 04:06:40 | Log-Likelihood: | -68.649 |
No. Observations: | 15 | AIC: | 143.3 |
Df Residuals: | 12 | BIC: | 145.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -960.2820 | 510.428 | -1.881 | 0.084 | -2072.408 151.844 |
C(dose)[T.1] | 52.1094 | 13.684 | 3.808 | 0.002 | 22.294 81.924 |
expression | 92.8367 | 46.100 | 2.014 | 0.067 | -7.607 193.280 |
Omnibus: | 0.808 | Durbin-Watson: | 1.032 |
Prob(Omnibus): | 0.668 | Jarque-Bera (JB): | 0.723 |
Skew: | -0.445 | Prob(JB): | 0.697 |
Kurtosis: | 2.396 | Cond. No. | 839. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:06:40 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.090 |
Model: | OLS | Adj. R-squared: | 0.020 |
Method: | Least Squares | F-statistic: | 1.288 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.277 |
Time: | 04:06:40 | Log-Likelihood: | -74.592 |
No. Observations: | 15 | AIC: | 153.2 |
Df Residuals: | 13 | BIC: | 154.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -727.3780 | 723.527 | -1.005 | 0.333 | -2290.463 835.707 |
expression | 74.2801 | 65.452 | 1.135 | 0.277 | -67.120 215.680 |
Omnibus: | 0.086 | Durbin-Watson: | 1.758 |
Prob(Omnibus): | 0.958 | Jarque-Bera (JB): | 0.067 |
Skew: | -0.009 | Prob(JB): | 0.967 |
Kurtosis: | 2.674 | Cond. No. | 832. |