AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.111 | 0.304 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.673 |
Model: | OLS | Adj. R-squared: | 0.621 |
Method: | Least Squares | F-statistic: | 13.04 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.39e-05 |
Time: | 03:47:05 | Log-Likelihood: | -100.25 |
No. Observations: | 23 | AIC: | 208.5 |
Df Residuals: | 19 | BIC: | 213.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 68.3111 | 113.465 | 0.602 | 0.554 | -169.174 305.797 |
C(dose)[T.1] | 136.4330 | 140.532 | 0.971 | 0.344 | -157.703 430.569 |
expression | -1.8847 | 15.142 | -0.124 | 0.902 | -33.577 29.808 |
expression:C(dose)[T.1] | -10.5012 | 18.447 | -0.569 | 0.576 | -49.110 28.108 |
Omnibus: | 0.128 | Durbin-Watson: | 1.683 |
Prob(Omnibus): | 0.938 | Jarque-Bera (JB): | 0.297 |
Skew: | -0.141 | Prob(JB): | 0.862 |
Kurtosis: | 2.520 | Cond. No. | 355. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.668 |
Model: | OLS | Adj. R-squared: | 0.634 |
Method: | Least Squares | F-statistic: | 20.08 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.65e-05 |
Time: | 03:47:05 | Log-Likelihood: | -100.44 |
No. Observations: | 23 | AIC: | 206.9 |
Df Residuals: | 20 | BIC: | 210.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 121.2589 | 63.883 | 1.898 | 0.072 | -11.999 254.517 |
C(dose)[T.1] | 56.6043 | 9.081 | 6.233 | 0.000 | 37.661 75.548 |
expression | -8.9605 | 8.501 | -1.054 | 0.304 | -26.693 8.772 |
Omnibus: | 0.112 | Durbin-Watson: | 1.712 |
Prob(Omnibus): | 0.946 | Jarque-Bera (JB): | 0.319 |
Skew: | -0.096 | Prob(JB): | 0.853 |
Kurtosis: | 2.456 | Cond. No. | 117. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:47:05 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.022 |
Model: | OLS | Adj. R-squared: | -0.025 |
Method: | Least Squares | F-statistic: | 0.4653 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.503 |
Time: | 03:47:05 | Log-Likelihood: | -112.85 |
No. Observations: | 23 | AIC: | 229.7 |
Df Residuals: | 21 | BIC: | 232.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 9.8520 | 102.672 | 0.096 | 0.924 | -203.667 223.371 |
expression | 9.1240 | 13.376 | 0.682 | 0.503 | -18.693 36.941 |
Omnibus: | 2.527 | Durbin-Watson: | 2.487 |
Prob(Omnibus): | 0.283 | Jarque-Bera (JB): | 1.524 |
Skew: | 0.365 | Prob(JB): | 0.467 |
Kurtosis: | 1.971 | Cond. No. | 112. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.538 | 0.137 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.545 |
Model: | OLS | Adj. R-squared: | 0.421 |
Method: | Least Squares | F-statistic: | 4.396 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0290 |
Time: | 03:47:05 | Log-Likelihood: | -69.390 |
No. Observations: | 15 | AIC: | 146.8 |
Df Residuals: | 11 | BIC: | 149.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -62.6562 | 143.186 | -0.438 | 0.670 | -377.806 252.494 |
C(dose)[T.1] | 17.9235 | 194.734 | 0.092 | 0.928 | -410.683 446.530 |
expression | 16.3143 | 17.905 | 0.911 | 0.382 | -23.095 55.724 |
expression:C(dose)[T.1] | 1.8176 | 23.222 | 0.078 | 0.939 | -49.293 52.928 |
Omnibus: | 2.295 | Durbin-Watson: | 0.621 |
Prob(Omnibus): | 0.317 | Jarque-Bera (JB): | 1.427 |
Skew: | -0.510 | Prob(JB): | 0.490 |
Kurtosis: | 1.884 | Cond. No. | 313. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.545 |
Model: | OLS | Adj. R-squared: | 0.469 |
Method: | Least Squares | F-statistic: | 7.187 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00887 |
Time: | 03:47:05 | Log-Likelihood: | -69.394 |
No. Observations: | 15 | AIC: | 144.8 |
Df Residuals: | 12 | BIC: | 146.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -71.2728 | 87.688 | -0.813 | 0.432 | -262.329 119.783 |
C(dose)[T.1] | 33.0985 | 17.510 | 1.890 | 0.083 | -5.052 71.249 |
expression | 17.3950 | 10.919 | 1.593 | 0.137 | -6.395 41.185 |
Omnibus: | 2.475 | Durbin-Watson: | 0.623 |
Prob(Omnibus): | 0.290 | Jarque-Bera (JB): | 1.464 |
Skew: | -0.505 | Prob(JB): | 0.481 |
Kurtosis: | 1.850 | Cond. No. | 107. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:47:05 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.410 |
Model: | OLS | Adj. R-squared: | 0.364 |
Method: | Least Squares | F-statistic: | 9.016 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0102 |
Time: | 03:47:05 | Log-Likelihood: | -71.349 |
No. Observations: | 15 | AIC: | 146.7 |
Df Residuals: | 13 | BIC: | 148.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -154.4745 | 83.008 | -1.861 | 0.086 | -333.803 24.854 |
expression | 29.3061 | 9.760 | 3.003 | 0.010 | 8.221 50.391 |
Omnibus: | 0.674 | Durbin-Watson: | 1.222 |
Prob(Omnibus): | 0.714 | Jarque-Bera (JB): | 0.605 |
Skew: | -0.023 | Prob(JB): | 0.739 |
Kurtosis: | 2.017 | Cond. No. | 91.7 |