AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.584 0.454 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.731
Model: OLS Adj. R-squared: 0.689
Method: Least Squares F-statistic: 17.22
Date: Tue, 28 Jan 2025 Prob (F-statistic): 1.20e-05
Time: 17:26:20 Log-Likelihood: -97.998
No. Observations: 23 AIC: 204.0
Df Residuals: 19 BIC: 208.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 0.6779 31.991 0.021 0.983 -66.280 67.636
C(dose)[T.1] 211.1276 69.131 3.054 0.007 66.434 355.821
expression 9.4011 5.536 1.698 0.106 -2.187 20.989
expression:C(dose)[T.1] -30.2130 13.380 -2.258 0.036 -58.217 -2.209
Omnibus: 1.441 Durbin-Watson: 1.786
Prob(Omnibus): 0.486 Jarque-Bera (JB): 0.559
Skew: -0.363 Prob(JB): 0.756
Kurtosis: 3.239 Cond. No. 112.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.625
Method: Least Squares F-statistic: 19.33
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.13e-05
Time: 17:26:20 Log-Likelihood: -100.73
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 30.1340 32.065 0.940 0.359 -36.752 97.020
C(dose)[T.1] 56.2310 9.438 5.958 0.000 36.545 75.917
expression 4.2280 5.533 0.764 0.454 -7.313 15.769
Omnibus: 0.471 Durbin-Watson: 1.882
Prob(Omnibus): 0.790 Jarque-Bera (JB): 0.567
Skew: -0.070 Prob(JB): 0.753
Kurtosis: 2.244 Cond. No. 42.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 17:26:20 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.054
Model: OLS Adj. R-squared: 0.009
Method: Least Squares F-statistic: 1.193
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.287
Time: 17:26:20 Log-Likelihood: -112.47
No. Observations: 23 AIC: 228.9
Df Residuals: 21 BIC: 231.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 128.0108 44.767 2.859 0.009 34.912 221.110
expression -8.9987 8.238 -1.092 0.287 -26.131 8.134
Omnibus: 5.469 Durbin-Watson: 2.407
Prob(Omnibus): 0.065 Jarque-Bera (JB): 1.698
Skew: 0.097 Prob(JB): 0.428
Kurtosis: 1.683 Cond. No. 35.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.048 0.326 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.493
Model: OLS Adj. R-squared: 0.355
Method: Least Squares F-statistic: 3.571
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0506
Time: 17:26:20 Log-Likelihood: -70.200
No. Observations: 15 AIC: 148.4
Df Residuals: 11 BIC: 151.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -10.6018 146.286 -0.072 0.944 -332.575 311.371
C(dose)[T.1] 61.0993 167.100 0.366 0.722 -306.686 428.884
expression 13.8296 25.846 0.535 0.603 -43.058 70.717
expression:C(dose)[T.1] -2.5184 29.249 -0.086 0.933 -66.895 61.858
Omnibus: 1.701 Durbin-Watson: 0.982
Prob(Omnibus): 0.427 Jarque-Bera (JB): 1.356
Skew: -0.638 Prob(JB): 0.508
Kurtosis: 2.264 Cond. No. 191.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.493
Model: OLS Adj. R-squared: 0.409
Method: Least Squares F-statistic: 5.835
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0170
Time: 17:26:20 Log-Likelihood: -70.205
No. Observations: 15 AIC: 146.4
Df Residuals: 12 BIC: 148.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 0.4940 66.304 0.007 0.994 -143.970 144.958
C(dose)[T.1] 46.7774 15.278 3.062 0.010 13.489 80.065
expression 11.8630 11.588 1.024 0.326 -13.384 37.110
Omnibus: 1.648 Durbin-Watson: 0.954
Prob(Omnibus): 0.439 Jarque-Bera (JB): 1.318
Skew: -0.630 Prob(JB): 0.517
Kurtosis: 2.278 Cond. No. 52.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 17:26:20 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.097
Model: OLS Adj. R-squared: 0.028
Method: Least Squares F-statistic: 1.397
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.258
Time: 17:26:20 Log-Likelihood: -74.535
No. Observations: 15 AIC: 153.1
Df Residuals: 13 BIC: 154.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -6.1143 84.973 -0.072 0.944 -189.687 177.459
expression 17.3501 14.680 1.182 0.258 -14.363 49.063
Omnibus: 0.327 Durbin-Watson: 1.461
Prob(Omnibus): 0.849 Jarque-Bera (JB): 0.470
Skew: 0.217 Prob(JB): 0.790
Kurtosis: 2.249 Cond. No. 52.4