AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.011 | 0.172 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.694 |
Model: | OLS | Adj. R-squared: | 0.646 |
Method: | Least Squares | F-statistic: | 14.37 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.98e-05 |
Time: | 03:42:18 | Log-Likelihood: | -99.482 |
No. Observations: | 23 | AIC: | 207.0 |
Df Residuals: | 19 | BIC: | 211.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 136.7933 | 127.039 | 1.077 | 0.295 | -129.102 402.689 |
C(dose)[T.1] | 274.1828 | 234.366 | 1.170 | 0.257 | -216.350 764.716 |
expression | -10.2545 | 15.758 | -0.651 | 0.523 | -43.236 22.727 |
expression:C(dose)[T.1] | -24.9354 | 27.740 | -0.899 | 0.380 | -82.996 33.125 |
Omnibus: | 0.458 | Durbin-Watson: | 2.097 |
Prob(Omnibus): | 0.795 | Jarque-Bera (JB): | 0.580 |
Skew: | 0.176 | Prob(JB): | 0.748 |
Kurtosis: | 2.306 | Cond. No. | 571. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.681 |
Model: | OLS | Adj. R-squared: | 0.649 |
Method: | Least Squares | F-statistic: | 21.36 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.09e-05 |
Time: | 03:42:19 | Log-Likelihood: | -99.961 |
No. Observations: | 23 | AIC: | 205.9 |
Df Residuals: | 20 | BIC: | 209.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 201.5939 | 104.101 | 1.937 | 0.067 | -15.557 418.744 |
C(dose)[T.1] | 63.7527 | 11.128 | 5.729 | 0.000 | 40.540 86.966 |
expression | -18.3007 | 12.906 | -1.418 | 0.172 | -45.222 8.621 |
Omnibus: | 1.096 | Durbin-Watson: | 2.220 |
Prob(Omnibus): | 0.578 | Jarque-Bera (JB): | 0.819 |
Skew: | 0.070 | Prob(JB): | 0.664 |
Kurtosis: | 2.087 | Cond. No. | 212. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:42:19 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.158 |
Model: | OLS | Adj. R-squared: | 0.118 |
Method: | Least Squares | F-statistic: | 3.935 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0605 |
Time: | 03:42:19 | Log-Likelihood: | -111.13 |
No. Observations: | 23 | AIC: | 226.3 |
Df Residuals: | 21 | BIC: | 228.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -174.2415 | 128.189 | -1.359 | 0.188 | -440.826 92.343 |
expression | 30.5029 | 15.376 | 1.984 | 0.061 | -1.474 62.479 |
Omnibus: | 2.653 | Durbin-Watson: | 1.991 |
Prob(Omnibus): | 0.265 | Jarque-Bera (JB): | 1.302 |
Skew: | 0.186 | Prob(JB): | 0.522 |
Kurtosis: | 1.895 | Cond. No. | 164. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.002 | 0.968 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.494 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 3.586 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0501 |
Time: | 03:42:19 | Log-Likelihood: | -70.185 |
No. Observations: | 15 | AIC: | 148.4 |
Df Residuals: | 11 | BIC: | 151.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 269.3836 | 259.732 | 1.037 | 0.322 | -302.283 841.051 |
C(dose)[T.1] | -267.8668 | 319.062 | -0.840 | 0.419 | -970.116 434.383 |
expression | -25.4127 | 32.651 | -0.778 | 0.453 | -97.277 46.452 |
expression:C(dose)[T.1] | 40.3101 | 40.489 | 0.996 | 0.341 | -48.805 129.425 |
Omnibus: | 2.362 | Durbin-Watson: | 0.957 |
Prob(Omnibus): | 0.307 | Jarque-Bera (JB): | 1.429 |
Skew: | -0.750 | Prob(JB): | 0.489 |
Kurtosis: | 2.805 | Cond. No. | 460. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.886 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 03:42:19 | Log-Likelihood: | -70.832 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 61.0573 | 153.813 | 0.397 | 0.698 | -274.073 396.188 |
C(dose)[T.1] | 49.3731 | 16.303 | 3.028 | 0.010 | 13.852 84.894 |
expression | 0.8017 | 19.301 | 0.042 | 0.968 | -41.251 42.854 |
Omnibus: | 2.712 | Durbin-Watson: | 0.819 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.856 |
Skew: | -0.842 | Prob(JB): | 0.395 |
Kurtosis: | 2.631 | Cond. No. | 156. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:42:19 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.028 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.3691 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.554 |
Time: | 03:42:19 | Log-Likelihood: | -75.090 |
No. Observations: | 15 | AIC: | 154.2 |
Df Residuals: | 13 | BIC: | 155.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 206.7697 | 186.440 | 1.109 | 0.288 | -196.010 609.549 |
expression | -14.4457 | 23.778 | -0.608 | 0.554 | -65.815 36.924 |
Omnibus: | 1.334 | Durbin-Watson: | 1.530 |
Prob(Omnibus): | 0.513 | Jarque-Bera (JB): | 0.834 |
Skew: | 0.162 | Prob(JB): | 0.659 |
Kurtosis: | 1.891 | Cond. No. | 148. |