AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.480 0.496 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.675
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 13.16
Date: Thu, 03 Apr 2025 Prob (F-statistic): 6.97e-05
Time: 23:00:41 Log-Likelihood: -100.17
No. Observations: 23 AIC: 208.3
Df Residuals: 19 BIC: 212.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 50.3951 33.162 1.520 0.145 -19.013 119.804
C(dose)[T.1] -11.8407 65.451 -0.181 0.858 -148.832 125.150
expression 0.7627 6.524 0.117 0.908 -12.892 14.417
expression:C(dose)[T.1] 13.8771 13.571 1.023 0.319 -14.528 42.282
Omnibus: 1.995 Durbin-Watson: 1.979
Prob(Omnibus): 0.369 Jarque-Bera (JB): 1.167
Skew: 0.208 Prob(JB): 0.558
Kurtosis: 1.977 Cond. No. 90.0

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 19.18
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.24e-05
Time: 23:00:42 Log-Likelihood: -100.79
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 34.3624 29.254 1.175 0.254 -26.661 95.386
C(dose)[T.1] 54.4771 8.821 6.176 0.000 36.077 72.878
expression 3.9694 5.727 0.693 0.496 -7.977 15.916
Omnibus: 1.243 Durbin-Watson: 1.950
Prob(Omnibus): 0.537 Jarque-Bera (JB): 0.876
Skew: 0.099 Prob(JB): 0.645
Kurtosis: 2.065 Cond. No. 34.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:00:42 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.044
Method: Least Squares F-statistic: 0.07864
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.782
Time: 23:00:42 Log-Likelihood: -113.06
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 92.4831 46.089 2.007 0.058 -3.364 188.330
expression -2.6254 9.362 -0.280 0.782 -22.095 16.844
Omnibus: 3.131 Durbin-Watson: 2.463
Prob(Omnibus): 0.209 Jarque-Bera (JB): 1.546
Skew: 0.296 Prob(JB): 0.462
Kurtosis: 1.877 Cond. No. 32.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.282 0.605 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.463
Model: OLS Adj. R-squared: 0.316
Method: Least Squares F-statistic: 3.155
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0684
Time: 23:00:42 Log-Likelihood: -70.643
No. Observations: 15 AIC: 149.3
Df Residuals: 11 BIC: 152.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 23.2497 109.394 0.213 0.836 -217.525 264.024
C(dose)[T.1] 66.3467 135.511 0.490 0.634 -231.912 364.605
expression 7.9330 19.528 0.406 0.692 -35.047 50.913
expression:C(dose)[T.1] -3.4994 23.455 -0.149 0.884 -55.123 48.124
Omnibus: 2.549 Durbin-Watson: 0.853
Prob(Omnibus): 0.280 Jarque-Bera (JB): 1.776
Skew: -0.817 Prob(JB): 0.411
Kurtosis: 2.588 Cond. No. 148.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.461
Model: OLS Adj. R-squared: 0.372
Method: Least Squares F-statistic: 5.141
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0244
Time: 23:00:42 Log-Likelihood: -70.659
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 36.7581 58.840 0.625 0.544 -91.444 164.960
C(dose)[T.1] 46.2926 16.490 2.807 0.016 10.364 82.221
expression 5.5073 10.367 0.531 0.605 -17.080 28.095
Omnibus: 2.548 Durbin-Watson: 0.836
Prob(Omnibus): 0.280 Jarque-Bera (JB): 1.749
Skew: -0.814 Prob(JB): 0.417
Kurtosis: 2.618 Cond. No. 46.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:00:42 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.108
Model: OLS Adj. R-squared: 0.039
Method: Least Squares F-statistic: 1.570
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.232
Time: 23:00:42 Log-Likelihood: -74.445
No. Observations: 15 AIC: 152.9
Df Residuals: 13 BIC: 154.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 5.0105 71.408 0.070 0.945 -149.258 159.279
expression 15.1543 12.095 1.253 0.232 -10.976 41.285
Omnibus: 0.307 Durbin-Watson: 1.694
Prob(Omnibus): 0.858 Jarque-Bera (JB): 0.460
Skew: 0.194 Prob(JB): 0.795
Kurtosis: 2.235 Cond. No. 45.2