AIM Score vs. Gene Expression 
		Full X range:
		
		 
			
		
		Auto X range:
		
		 
		
		
		
		Group Comparisons: Boxplots
		
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  1.970  |   0.176  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.688 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.639 | 
  | Method: |              Least Squares |     F-statistic:        |     13.97 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  4.77e-05 | 
  | Time: |                  03:30:51 |        Log-Likelihood:     |   -99.706 | 
  | No. Observations: |           23 |         AIC:                |     207.4 | 
  | Df Residuals: |               19 |         BIC:                |     212.0 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                 -318.1702 |    255.915 |     -1.243 |   0.229 |   -853.806   217.465 | 
  | C(dose)[T.1] |               298.4767 |    357.093 |      0.836 |   0.414 |   -448.928  1045.881 | 
  | expression |                  41.8930 |     28.783 |      1.455 |   0.162 |    -18.351   102.137 | 
  | expression:C(dose)[T.1] |    -27.4403 |     40.351 |     -0.680 |   0.505 |   -111.896    57.015 | 
  | Omnibus: |         0.703 |    Durbin-Watson:      |     1.358 | 
  | Prob(Omnibus): |   0.704 |    Jarque-Bera (JB):   |     0.745 | 
  | Skew: |           -0.256 |    Prob(JB):           |     0.689 | 
  | Kurtosis: |        2.282 |    Cond. No.           |      983. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.681 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.649 | 
  | Method: |              Least Squares |     F-statistic:        |     21.30 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  1.11e-05 | 
  | Time: |                  03:30:51 |        Log-Likelihood:     |   -99.982 | 
  | No. Observations: |           23 |         AIC:                |     206.0 | 
  | Df Residuals: |               20 |         BIC:                |     209.4 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |      -194.0619 |    176.976 |     -1.097 |   0.286 |   -563.228   175.105 | 
  | C(dose)[T.1] |     55.7096 |      8.536 |      6.526 |   0.000 |     37.903    73.516 | 
  | expression |       27.9307 |     19.899 |      1.404 |   0.176 |    -13.579    69.440 | 
  | Omnibus: |         0.972 |    Durbin-Watson:      |     1.580 | 
  | Prob(Omnibus): |   0.615 |    Jarque-Bera (JB):   |     0.813 | 
  | Skew: |           -0.161 |    Prob(JB):           |     0.666 | 
  | Kurtosis: |        2.137 |    Cond. No.           |      380. | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.649 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.632 | 
  | Method: |              Least Squares |     F-statistic:        |     38.84 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  3.51e-06 | 
  | Time: |                  03:30:51 |        Log-Likelihood:     |   -101.06 | 
  | No. Observations: |           23 |         AIC:                |     206.1 | 
  | Df Residuals: |               21 |         BIC:                |     208.4 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        54.2083 |      5.919 |      9.159 |   0.000 |     41.900    66.517 | 
  | C(dose)[T.1] |     53.3371 |      8.558 |      6.232 |   0.000 |     35.539    71.135 | 
  | Omnibus: |         0.322 |    Durbin-Watson:      |     1.888 | 
  | Prob(Omnibus): |   0.851 |    Jarque-Bera (JB):   |     0.485 | 
  | Skew: |            0.060 |    Prob(JB):           |     0.785 | 
  | Kurtosis: |        2.299 |    Cond. No.           |      2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.000 | 
  | Model: |                    OLS |          Adj. R-squared:     |    -0.047 | 
  | Method: |              Least Squares |     F-statistic:        |  0.004332 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |    0.948 |  
  | Time: |                  03:30:51 |        Log-Likelihood:     |   -113.10 | 
  | No. Observations: |           23 |         AIC:                |     230.2 | 
  | Df Residuals: |               21 |         BIC:                |     232.5 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |      60.1077 |    298.043 |      0.202 |   0.842 |   -559.706   679.922 | 
  | expression |      2.2162 |     33.674 |      0.066 |   0.948 |    -67.813    72.246 | 
  | Omnibus: |         3.275 |    Durbin-Watson:      |     2.486 | 
  | Prob(Omnibus): |   0.194 |    Jarque-Bera (JB):   |     1.569 | 
  | Skew: |            0.292 |    Prob(JB):           |     0.456 | 
  | Kurtosis: |        1.862 |    Cond. No.           |      370. | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  2.903  |   0.114  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.558 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.437 | 
  | Method: |              Least Squares |     F-statistic:        |     4.624 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0251 |  
  | Time: |                  03:30:51 |        Log-Likelihood:     |   -69.181 | 
  | No. Observations: |           15 |         AIC:                |     146.4 | 
  | Df Residuals: |               11 |         BIC:                |     149.2 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                 -374.0787 |    332.470 |     -1.125 |   0.284 |  -1105.841   357.683 | 
  | C(dose)[T.1] |               -97.9801 |    690.986 |     -0.142 |   0.890 |  -1618.831  1422.871 | 
  | expression |                  50.0934 |     37.702 |      1.329 |   0.211 |    -32.889   133.076 | 
  | expression:C(dose)[T.1] |     15.2800 |     77.105 |      0.198 |   0.847 |   -154.427   184.987 | 
  | Omnibus: |         1.248 |    Durbin-Watson:      |     0.931 | 
  | Prob(Omnibus): |   0.536 |    Jarque-Bera (JB):   |     0.982 | 
  | Skew: |           -0.562 |    Prob(JB):           |     0.612 | 
  | Kurtosis: |        2.444 |    Cond. No.           |  1.02e+03 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.556 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.482 | 
  | Method: |              Least Squares |     F-statistic:        |     7.518 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00765 | 
  | Time: |                  03:30:51 |        Log-Likelihood:     |   -69.208 | 
  | No. Observations: |           15 |         AIC:                |     144.4 | 
  | Df Residuals: |               12 |         BIC:                |     146.5 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |      -406.2784 |    278.208 |     -1.460 |   0.170 |  -1012.441   199.884 | 
  | C(dose)[T.1] |     38.9168 |     15.358 |      2.534 |   0.026 |      5.454    72.379 | 
  | expression |       53.7468 |     31.544 |      1.704 |   0.114 |    -14.981   122.475 | 
  | Omnibus: |         1.484 |    Durbin-Watson:      |     0.932 | 
  | Prob(Omnibus): |   0.476 |    Jarque-Bera (JB):   |     1.122 | 
  | Skew: |           -0.616 |    Prob(JB):           |     0.571 | 
  | Kurtosis: |        2.472 |    Cond. No.           |      357. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.449 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.406 | 
  | Method: |              Least Squares |     F-statistic:        |     10.58 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00629 | 
  | Time: |                  03:30:51 |        Log-Likelihood:     |   -70.833 | 
  | No. Observations: |           15 |         AIC:                |     145.7 | 
  | Df Residuals: |               13 |         BIC:                |     147.1 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        67.4286 |     11.044 |      6.106 |   0.000 |     43.570    91.287 | 
  | C(dose)[T.1] |     49.1964 |     15.122 |      3.253 |   0.006 |     16.527    81.866 | 
  | Omnibus: |         2.713 |    Durbin-Watson:      |     0.810 | 
  | Prob(Omnibus): |   0.258 |    Jarque-Bera (JB):   |     1.868 | 
  | Skew: |           -0.843 |    Prob(JB):           |     0.393 | 
  | Kurtosis: |        2.619 |    Cond. No.           |      2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.319 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.266 | 
  | Method: |              Least Squares |     F-statistic:        |     6.080 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0284 |  
  | Time: |                  03:30:51 |        Log-Likelihood:     |   -72.422 | 
  | No. Observations: |           15 |         AIC:                |     148.8 | 
  | Df Residuals: |               13 |         BIC:                |     150.3 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |    -665.4610 |    307.977 |     -2.161 |   0.050 |  -1330.804    -0.118 | 
  | expression |     85.1451 |     34.530 |      2.466 |   0.028 |     10.547   159.744 | 
  | Omnibus: |         1.617 |    Durbin-Watson:      |     1.962 | 
  | Prob(Omnibus): |   0.446 |    Jarque-Bera (JB):   |     1.029 | 
  | Skew: |            0.332 |    Prob(JB):           |     0.598 | 
  | Kurtosis: |        1.902 |    Cond. No.           |      332. |