AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.797 0.383 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.665
Model: OLS Adj. R-squared: 0.612
Method: Least Squares F-statistic: 12.59
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.21e-05
Time: 04:59:50 Log-Likelihood: -100.52
No. Observations: 23 AIC: 209.0
Df Residuals: 19 BIC: 213.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 33.2638 172.204 0.193 0.849 -327.164 393.692
C(dose)[T.1] -26.0097 202.001 -0.129 0.899 -448.802 396.783
expression 2.7152 22.310 0.122 0.904 -43.981 49.411
expression:C(dose)[T.1] 10.3823 26.215 0.396 0.696 -44.486 65.251
Omnibus: 0.736 Durbin-Watson: 1.863
Prob(Omnibus): 0.692 Jarque-Bera (JB): 0.780
Skew: 0.321 Prob(JB): 0.677
Kurtosis: 2.365 Cond. No. 516.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.629
Method: Least Squares F-statistic: 19.63
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.92e-05
Time: 04:59:50 Log-Likelihood: -100.61
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -24.7422 88.639 -0.279 0.783 -209.641 160.156
C(dose)[T.1] 53.9153 8.625 6.251 0.000 35.925 71.906
expression 10.2350 11.465 0.893 0.383 -13.681 34.151
Omnibus: 0.682 Durbin-Watson: 1.771
Prob(Omnibus): 0.711 Jarque-Bera (JB): 0.724
Skew: 0.233 Prob(JB): 0.696
Kurtosis: 2.266 Cond. No. 162.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:59:50 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.003
Model: OLS Adj. R-squared: -0.044
Method: Least Squares F-statistic: 0.06403
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.803
Time: 04:59:50 Log-Likelihood: -113.07
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 42.4182 147.579 0.287 0.777 -264.488 349.325
expression 4.8524 19.176 0.253 0.803 -35.027 44.731
Omnibus: 3.076 Durbin-Watson: 2.488
Prob(Omnibus): 0.215 Jarque-Bera (JB): 1.511
Skew: 0.282 Prob(JB): 0.470
Kurtosis: 1.878 Cond. No. 160.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.548 0.473 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.473
Model: OLS Adj. R-squared: 0.329
Method: Least Squares F-statistic: 3.291
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0619
Time: 04:59:50 Log-Likelihood: -70.496
No. Observations: 15 AIC: 149.0
Df Residuals: 11 BIC: 151.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 181.8425 178.528 1.019 0.330 -211.095 574.780
C(dose)[T.1] 23.5187 341.478 0.069 0.946 -728.070 775.107
expression -15.2578 23.756 -0.642 0.534 -67.545 37.029
expression:C(dose)[T.1] 2.6398 47.700 0.055 0.957 -102.347 107.626
Omnibus: 2.111 Durbin-Watson: 0.951
Prob(Omnibus): 0.348 Jarque-Bera (JB): 1.461
Skew: -0.737 Prob(JB): 0.482
Kurtosis: 2.592 Cond. No. 377.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.473
Model: OLS Adj. R-squared: 0.385
Method: Least Squares F-statistic: 5.382
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0215
Time: 04:59:50 Log-Likelihood: -70.498
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 176.9326 148.347 1.193 0.256 -146.288 500.153
C(dose)[T.1] 42.3882 17.930 2.364 0.036 3.321 81.455
expression -14.6030 19.726 -0.740 0.473 -57.583 28.376
Omnibus: 2.077 Durbin-Watson: 0.935
Prob(Omnibus): 0.354 Jarque-Bera (JB): 1.441
Skew: -0.731 Prob(JB): 0.487
Kurtosis: 2.588 Cond. No. 144.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:59:50 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.227
Model: OLS Adj. R-squared: 0.168
Method: Least Squares F-statistic: 3.825
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0723
Time: 04:59:50 Log-Likelihood: -73.366
No. Observations: 15 AIC: 150.7
Df Residuals: 13 BIC: 152.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 372.9542 143.082 2.607 0.022 63.844 682.065
expression -38.5221 19.697 -1.956 0.072 -81.075 4.030
Omnibus: 1.374 Durbin-Watson: 1.447
Prob(Omnibus): 0.503 Jarque-Bera (JB): 0.819
Skew: 0.094 Prob(JB): 0.664
Kurtosis: 1.871 Cond. No. 119.