AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.131 0.722 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.598
Method: Least Squares F-statistic: 11.92
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000128
Time: 04:26:33 Log-Likelihood: -100.93
No. Observations: 23 AIC: 209.9
Df Residuals: 19 BIC: 214.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.4220 124.618 0.437 0.667 -206.406 315.250
C(dose)[T.1] 4.4335 162.573 0.027 0.979 -335.836 344.703
expression -0.0304 17.704 -0.002 0.999 -37.085 37.025
expression:C(dose)[T.1] 7.1526 23.362 0.306 0.763 -41.744 56.050
Omnibus: 0.437 Durbin-Watson: 1.934
Prob(Omnibus): 0.804 Jarque-Bera (JB): 0.546
Skew: 0.036 Prob(JB): 0.761
Kurtosis: 2.249 Cond. No. 346.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.68
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.66e-05
Time: 04:26:33 Log-Likelihood: -100.99
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 25.5439 79.577 0.321 0.752 -140.452 191.540
C(dose)[T.1] 54.1280 9.011 6.007 0.000 35.331 72.925
expression 4.0773 11.287 0.361 0.722 -19.466 27.621
Omnibus: 0.238 Durbin-Watson: 1.947
Prob(Omnibus): 0.888 Jarque-Bera (JB): 0.432
Skew: 0.080 Prob(JB): 0.806
Kurtosis: 2.348 Cond. No. 130.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:26:33 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.022
Model: OLS Adj. R-squared: -0.024
Method: Least Squares F-statistic: 0.4798
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.496
Time: 04:26:33 Log-Likelihood: -112.84
No. Observations: 23 AIC: 229.7
Df Residuals: 21 BIC: 232.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 165.6943 124.327 1.333 0.197 -92.857 424.246
expression -12.3930 17.891 -0.693 0.496 -49.600 24.814
Omnibus: 2.089 Durbin-Watson: 2.415
Prob(Omnibus): 0.352 Jarque-Bera (JB): 1.359
Skew: 0.337 Prob(JB): 0.507
Kurtosis: 2.018 Cond. No. 124.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.005 0.943 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.674
Model: OLS Adj. R-squared: 0.585
Method: Least Squares F-statistic: 7.590
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00503
Time: 04:26:33 Log-Likelihood: -66.888
No. Observations: 15 AIC: 141.8
Df Residuals: 11 BIC: 144.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 32.2337 62.029 0.520 0.614 -104.292 168.759
C(dose)[T.1] 793.9315 270.238 2.938 0.013 199.142 1388.721
expression 5.0429 8.789 0.574 0.578 -14.301 24.387
expression:C(dose)[T.1] -101.0843 36.652 -2.758 0.019 -181.755 -20.413
Omnibus: 4.043 Durbin-Watson: 0.936
Prob(Omnibus): 0.132 Jarque-Bera (JB): 2.203
Skew: -0.933 Prob(JB): 0.332
Kurtosis: 3.212 Cond. No. 371.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.890
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0280
Time: 04:26:33 Log-Likelihood: -70.830
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 72.7989 75.036 0.970 0.351 -90.690 236.288
C(dose)[T.1] 49.5109 16.324 3.033 0.010 13.943 85.079
expression -0.7695 10.625 -0.072 0.943 -23.919 22.380
Omnibus: 2.674 Durbin-Watson: 0.819
Prob(Omnibus): 0.263 Jarque-Bera (JB): 1.867
Skew: -0.839 Prob(JB): 0.393
Kurtosis: 2.589 Cond. No. 70.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:26:33 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.027
Model: OLS Adj. R-squared: -0.048
Method: Least Squares F-statistic: 0.3559
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.561
Time: 04:26:33 Log-Likelihood: -75.097
No. Observations: 15 AIC: 154.2
Df Residuals: 13 BIC: 155.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 37.5121 94.660 0.396 0.698 -166.989 242.013
expression 7.8024 13.079 0.597 0.561 -20.452 36.057
Omnibus: 1.302 Durbin-Watson: 1.538
Prob(Omnibus): 0.521 Jarque-Bera (JB): 0.799
Skew: 0.086 Prob(JB): 0.671
Kurtosis: 1.883 Cond. No. 69.6