AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
7.449 0.013 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.757
Model: OLS Adj. R-squared: 0.718
Method: Least Squares F-statistic: 19.70
Date: Thu, 03 Apr 2025 Prob (F-statistic): 4.70e-06
Time: 23:00:42 Log-Likelihood: -96.851
No. Observations: 23 AIC: 201.7
Df Residuals: 19 BIC: 206.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 26.1431 25.984 1.006 0.327 -28.242 80.528
C(dose)[T.1] 10.7320 37.405 0.287 0.777 -67.558 89.022
expression 8.9081 8.082 1.102 0.284 -8.007 25.824
expression:C(dose)[T.1] 10.7293 10.907 0.984 0.338 -12.099 33.557
Omnibus: 1.159 Durbin-Watson: 1.546
Prob(Omnibus): 0.560 Jarque-Bera (JB): 1.069
Skew: 0.383 Prob(JB): 0.586
Kurtosis: 2.274 Cond. No. 49.3

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.744
Model: OLS Adj. R-squared: 0.719
Method: Least Squares F-statistic: 29.11
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.20e-06
Time: 23:00:42 Log-Likelihood: -97.422
No. Observations: 23 AIC: 200.8
Df Residuals: 20 BIC: 204.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 7.5824 17.851 0.425 0.676 -29.655 44.819
C(dose)[T.1] 46.7035 7.871 5.934 0.000 30.286 63.121
expression 14.7994 5.423 2.729 0.013 3.488 26.111
Omnibus: 1.124 Durbin-Watson: 1.434
Prob(Omnibus): 0.570 Jarque-Bera (JB): 0.912
Skew: 0.223 Prob(JB): 0.634
Kurtosis: 2.132 Cond. No. 18.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:00:43 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.294
Model: OLS Adj. R-squared: 0.260
Method: Least Squares F-statistic: 8.749
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00751
Time: 23:00:43 Log-Likelihood: -109.10
No. Observations: 23 AIC: 222.2
Df Residuals: 21 BIC: 224.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -3.5179 28.785 -0.122 0.904 -63.381 56.345
expression 24.7362 8.363 2.958 0.008 7.345 42.127
Omnibus: 0.195 Durbin-Watson: 2.708
Prob(Omnibus): 0.907 Jarque-Bera (JB): 0.397
Skew: -0.108 Prob(JB): 0.820
Kurtosis: 2.394 Cond. No. 17.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.556 0.084 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.586
Model: OLS Adj. R-squared: 0.473
Method: Least Squares F-statistic: 5.187
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0178
Time: 23:00:43 Log-Likelihood: -68.688
No. Observations: 15 AIC: 145.4
Df Residuals: 11 BIC: 148.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -69.0424 90.497 -0.763 0.462 -268.225 130.141
C(dose)[T.1] 110.5568 111.820 0.989 0.344 -135.557 356.670
expression 24.8738 16.385 1.518 0.157 -11.189 60.937
expression:C(dose)[T.1] -11.0180 20.299 -0.543 0.598 -55.696 33.660
Omnibus: 0.051 Durbin-Watson: 1.468
Prob(Omnibus): 0.975 Jarque-Bera (JB): 0.267
Skew: -0.073 Prob(JB): 0.875
Kurtosis: 2.364 Cond. No. 127.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.575
Model: OLS Adj. R-squared: 0.504
Method: Least Squares F-statistic: 8.110
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00591
Time: 23:00:43 Log-Likelihood: -68.886
No. Observations: 15 AIC: 143.8
Df Residuals: 12 BIC: 145.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -29.6558 52.463 -0.565 0.582 -143.963 84.652
C(dose)[T.1] 50.3583 13.838 3.639 0.003 20.208 80.508
expression 17.6950 9.383 1.886 0.084 -2.750 38.140
Omnibus: 0.006 Durbin-Watson: 1.433
Prob(Omnibus): 0.997 Jarque-Bera (JB): 0.185
Skew: 0.037 Prob(JB): 0.912
Kurtosis: 2.461 Cond. No. 43.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:00:43 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.105
Model: OLS Adj. R-squared: 0.037
Method: Least Squares F-statistic: 1.533
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.238
Time: 23:00:43 Log-Likelihood: -74.464
No. Observations: 15 AIC: 152.9
Df Residuals: 13 BIC: 154.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 5.4906 71.858 0.076 0.940 -149.749 160.730
expression 16.1746 13.063 1.238 0.238 -12.046 44.395
Omnibus: 1.558 Durbin-Watson: 1.845
Prob(Omnibus): 0.459 Jarque-Bera (JB): 1.234
Skew: 0.547 Prob(JB): 0.540
Kurtosis: 2.118 Cond. No. 42.5