AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.070 | 0.794 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.666 |
Model: | OLS | Adj. R-squared: | 0.613 |
Method: | Least Squares | F-statistic: | 12.63 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 9.02e-05 |
Time: | 22:45:17 | Log-Likelihood: | -100.49 |
No. Observations: | 23 | AIC: | 209.0 |
Df Residuals: | 19 | BIC: | 213.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -65.0167 | 150.216 | -0.433 | 0.670 | -379.422 249.389 |
C(dose)[T.1] | 276.1849 | 234.183 | 1.179 | 0.253 | -213.966 766.336 |
expression | 15.2280 | 19.171 | 0.794 | 0.437 | -24.897 55.352 |
expression:C(dose)[T.1] | -29.1892 | 30.866 | -0.946 | 0.356 | -93.792 35.413 |
Omnibus: | 0.227 | Durbin-Watson: | 1.900 |
Prob(Omnibus): | 0.893 | Jarque-Bera (JB): | 0.422 |
Skew: | 0.116 | Prob(JB): | 0.810 |
Kurtosis: | 2.378 | Cond. No. | 512. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.59 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.74e-05 |
Time: | 22:45:18 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 23.1423 | 117.478 | 0.197 | 0.846 | -221.912 268.197 |
C(dose)[T.1] | 54.9527 | 10.671 | 5.150 | 0.000 | 32.694 77.212 |
expression | 3.9679 | 14.985 | 0.265 | 0.794 | -27.290 35.226 |
Omnibus: | 0.235 | Durbin-Watson: | 1.844 |
Prob(Omnibus): | 0.889 | Jarque-Bera (JB): | 0.430 |
Skew: | 0.004 | Prob(JB): | 0.807 |
Kurtosis: | 2.330 | Cond. No. | 209. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:45:18 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.187 |
Model: | OLS | Adj. R-squared: | 0.148 |
Method: | Least Squares | F-statistic: | 4.816 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0396 |
Time: | 22:45:18 | Log-Likelihood: | -110.73 |
No. Observations: | 23 | AIC: | 225.5 |
Df Residuals: | 21 | BIC: | 227.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 386.2872 | 139.847 | 2.762 | 0.012 | 95.459 677.116 |
expression | -40.1552 | 18.298 | -2.195 | 0.040 | -78.207 -2.103 |
Omnibus: | 0.222 | Durbin-Watson: | 2.495 |
Prob(Omnibus): | 0.895 | Jarque-Bera (JB): | 0.417 |
Skew: | 0.117 | Prob(JB): | 0.812 |
Kurtosis: | 2.383 | Cond. No. | 167. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.012 | 0.915 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.452 |
Model: | OLS | Adj. R-squared: | 0.303 |
Method: | Least Squares | F-statistic: | 3.028 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0752 |
Time: | 22:45:18 | Log-Likelihood: | -70.785 |
No. Observations: | 15 | AIC: | 149.6 |
Df Residuals: | 11 | BIC: | 152.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 10.0260 | 252.792 | 0.040 | 0.969 | -546.364 566.416 |
C(dose)[T.1] | 154.5790 | 426.122 | 0.363 | 0.724 | -783.310 1092.468 |
expression | 7.2355 | 31.828 | 0.227 | 0.824 | -62.818 77.289 |
expression:C(dose)[T.1] | -13.5339 | 55.125 | -0.246 | 0.811 | -134.862 107.795 |
Omnibus: | 2.360 | Durbin-Watson: | 0.800 |
Prob(Omnibus): | 0.307 | Jarque-Bera (JB): | 1.641 |
Skew: | -0.784 | Prob(JB): | 0.440 |
Kurtosis: | 2.588 | Cond. No. | 509. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.896 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0279 |
Time: | 22:45:18 | Log-Likelihood: | -70.826 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 45.8208 | 198.262 | 0.231 | 0.821 | -386.155 477.796 |
C(dose)[T.1] | 50.0563 | 17.594 | 2.845 | 0.015 | 11.723 88.390 |
expression | 2.7236 | 24.949 | 0.109 | 0.915 | -51.635 57.082 |
Omnibus: | 2.781 | Durbin-Watson: | 0.789 |
Prob(Omnibus): | 0.249 | Jarque-Bera (JB): | 1.923 |
Skew: | -0.855 | Prob(JB): | 0.382 |
Kurtosis: | 2.614 | Cond. No. | 200. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:45:18 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.078 |
Model: | OLS | Adj. R-squared: | 0.007 |
Method: | Least Squares | F-statistic: | 1.097 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.314 |
Time: | 22:45:18 | Log-Likelihood: | -74.692 |
No. Observations: | 15 | AIC: | 153.4 |
Df Residuals: | 13 | BIC: | 154.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 319.2888 | 215.591 | 1.481 | 0.162 | -146.468 785.045 |
expression | -29.0560 | 27.736 | -1.048 | 0.314 | -88.975 30.863 |
Omnibus: | 0.018 | Durbin-Watson: | 1.551 |
Prob(Omnibus): | 0.991 | Jarque-Bera (JB): | 0.237 |
Skew: | -0.001 | Prob(JB): | 0.888 |
Kurtosis: | 2.384 | Cond. No. | 175. |