AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.653 0.213 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.685
Model: OLS Adj. R-squared: 0.636
Method: Least Squares F-statistic: 13.80
Date: Thu, 03 Apr 2025 Prob (F-statistic): 5.17e-05
Time: 23:04:45 Log-Likelihood: -99.804
No. Observations: 23 AIC: 207.6
Df Residuals: 19 BIC: 212.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -58.7243 672.337 -0.087 0.931 -1465.942 1348.493
C(dose)[T.1] -591.0848 846.444 -0.698 0.493 -2362.712 1180.542
expression 10.6139 63.187 0.168 0.868 -121.637 142.865
expression:C(dose)[T.1] 60.5294 79.533 0.761 0.456 -105.936 226.995
Omnibus: 0.342 Durbin-Watson: 1.868
Prob(Omnibus): 0.843 Jarque-Bera (JB): 0.496
Skew: 0.051 Prob(JB): 0.780
Kurtosis: 2.288 Cond. No. 2.94e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.676
Model: OLS Adj. R-squared: 0.643
Method: Least Squares F-statistic: 20.85
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.28e-05
Time: 23:04:45 Log-Likelihood: -100.15
No. Observations: 23 AIC: 206.3
Df Residuals: 20 BIC: 209.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -465.2262 404.025 -1.151 0.263 -1308.007 377.554
C(dose)[T.1] 53.0744 8.431 6.295 0.000 35.488 70.661
expression 48.8186 37.968 1.286 0.213 -30.381 128.018
Omnibus: 1.198 Durbin-Watson: 2.013
Prob(Omnibus): 0.549 Jarque-Bera (JB): 0.859
Skew: 0.091 Prob(JB): 0.651
Kurtosis: 2.071 Cond. No. 1.03e+03

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:04:45 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.034
Model: OLS Adj. R-squared: -0.012
Method: Least Squares F-statistic: 0.7290
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.403
Time: 23:04:45 Log-Likelihood: -112.71
No. Observations: 23 AIC: 229.4
Df Residuals: 21 BIC: 231.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -501.4839 680.748 -0.737 0.469 -1917.177 914.210
expression 54.6105 63.961 0.854 0.403 -78.403 187.624
Omnibus: 4.588 Durbin-Watson: 2.658
Prob(Omnibus): 0.101 Jarque-Bera (JB): 1.665
Skew: 0.199 Prob(JB): 0.435
Kurtosis: 1.743 Cond. No. 1.03e+03

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.284 0.157 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.545
Model: OLS Adj. R-squared: 0.421
Method: Least Squares F-statistic: 4.386
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0292
Time: 23:04:45 Log-Likelihood: -69.399
No. Observations: 15 AIC: 146.8
Df Residuals: 11 BIC: 149.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -870.4204 752.821 -1.156 0.272 -2527.369 786.528
C(dose)[T.1] 464.4790 961.200 0.483 0.638 -1651.107 2580.065
expression 85.3408 68.497 1.246 0.239 -65.420 236.101
expression:C(dose)[T.1] -37.8826 87.389 -0.433 0.673 -230.224 154.459
Omnibus: 2.317 Durbin-Watson: 1.070
Prob(Omnibus): 0.314 Jarque-Bera (JB): 1.712
Skew: -0.684 Prob(JB): 0.425
Kurtosis: 2.068 Cond. No. 2.00e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.537
Model: OLS Adj. R-squared: 0.460
Method: Least Squares F-statistic: 6.956
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00986
Time: 23:04:45 Log-Likelihood: -69.526
No. Observations: 15 AIC: 145.1
Df Residuals: 12 BIC: 147.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -614.6532 451.476 -1.361 0.198 -1598.334 369.028
C(dose)[T.1] 47.8546 14.454 3.311 0.006 16.362 79.347
expression 62.0670 41.071 1.511 0.157 -27.420 151.554
Omnibus: 2.540 Durbin-Watson: 0.935
Prob(Omnibus): 0.281 Jarque-Bera (JB): 1.942
Skew: -0.793 Prob(JB): 0.379
Kurtosis: 2.231 Cond. No. 697.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:04:45 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.114
Model: OLS Adj. R-squared: 0.046
Method: Least Squares F-statistic: 1.671
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.219
Time: 23:04:45 Log-Likelihood: -74.393
No. Observations: 15 AIC: 152.8
Df Residuals: 13 BIC: 154.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -681.0281 599.426 -1.136 0.276 -1976.009 613.953
expression 70.4205 54.481 1.293 0.219 -47.280 188.121
Omnibus: 2.819 Durbin-Watson: 1.800
Prob(Omnibus): 0.244 Jarque-Bera (JB): 1.202
Skew: 0.246 Prob(JB): 0.548
Kurtosis: 1.703 Cond. No. 695.