AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.363 | 0.553 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.679 |
Model: | OLS | Adj. R-squared: | 0.628 |
Method: | Least Squares | F-statistic: | 13.41 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.21e-05 |
Time: | 03:55:56 | Log-Likelihood: | -100.03 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 19 | BIC: | 212.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 128.2575 | 153.901 | 0.833 | 0.415 | -193.860 450.375 |
C(dose)[T.1] | -180.6885 | 200.589 | -0.901 | 0.379 | -600.526 239.149 |
expression | -9.7779 | 20.307 | -0.482 | 0.636 | -52.281 32.725 |
expression:C(dose)[T.1] | 32.3094 | 27.201 | 1.188 | 0.250 | -24.624 89.242 |
Omnibus: | 0.533 | Durbin-Watson: | 1.727 |
Prob(Omnibus): | 0.766 | Jarque-Bera (JB): | 0.614 |
Skew: | 0.293 | Prob(JB): | 0.736 |
Kurtosis: | 2.456 | Cond. No. | 465. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.655 |
Model: | OLS | Adj. R-squared: | 0.621 |
Method: | Least Squares | F-statistic: | 19.01 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.37e-05 |
Time: | 03:55:56 | Log-Likelihood: | -100.86 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 20 | BIC: | 211.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -8.1094 | 103.540 | -0.078 | 0.938 | -224.090 207.871 |
C(dose)[T.1] | 57.2289 | 10.826 | 5.286 | 0.000 | 34.646 79.812 |
expression | 8.2289 | 13.649 | 0.603 | 0.553 | -20.243 36.700 |
Omnibus: | 0.217 | Durbin-Watson: | 2.018 |
Prob(Omnibus): | 0.897 | Jarque-Bera (JB): | 0.417 |
Skew: | 0.083 | Prob(JB): | 0.812 |
Kurtosis: | 2.362 | Cond. No. | 179. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:55:56 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.174 |
Model: | OLS | Adj. R-squared: | 0.134 |
Method: | Least Squares | F-statistic: | 4.416 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0479 |
Time: | 03:55:56 | Log-Likelihood: | -110.91 |
No. Observations: | 23 | AIC: | 225.8 |
Df Residuals: | 21 | BIC: | 228.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 335.3250 | 121.814 | 2.753 | 0.012 | 82.000 588.650 |
expression | -34.7913 | 16.556 | -2.101 | 0.048 | -69.222 -0.361 |
Omnibus: | 3.972 | Durbin-Watson: | 1.971 |
Prob(Omnibus): | 0.137 | Jarque-Bera (JB): | 2.312 |
Skew: | 0.550 | Prob(JB): | 0.315 |
Kurtosis: | 1.904 | Cond. No. | 139. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.003 | 0.954 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.457 |
Model: | OLS | Adj. R-squared: | 0.309 |
Method: | Least Squares | F-statistic: | 3.089 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0719 |
Time: | 03:55:56 | Log-Likelihood: | -70.717 |
No. Observations: | 15 | AIC: | 149.4 |
Df Residuals: | 11 | BIC: | 152.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 104.7886 | 142.835 | 0.734 | 0.479 | -209.588 419.166 |
C(dose)[T.1] | -67.1479 | 284.963 | -0.236 | 0.818 | -694.348 560.052 |
expression | -6.5553 | 24.975 | -0.262 | 0.798 | -61.525 48.414 |
expression:C(dose)[T.1] | 19.6741 | 47.934 | 0.410 | 0.689 | -85.828 125.176 |
Omnibus: | 3.397 | Durbin-Watson: | 0.879 |
Prob(Omnibus): | 0.183 | Jarque-Bera (JB): | 2.094 |
Skew: | -0.914 | Prob(JB): | 0.351 |
Kurtosis: | 2.886 | Cond. No. | 258. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.888 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 03:55:57 | Log-Likelihood: | -70.831 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 74.3498 | 117.768 | 0.631 | 0.540 | -182.244 330.944 |
C(dose)[T.1] | 49.5869 | 17.070 | 2.905 | 0.013 | 12.395 86.779 |
expression | -1.2144 | 20.565 | -0.059 | 0.954 | -46.022 43.593 |
Omnibus: | 2.587 | Durbin-Watson: | 0.824 |
Prob(Omnibus): | 0.274 | Jarque-Bera (JB): | 1.804 |
Skew: | -0.824 | Prob(JB): | 0.406 |
Kurtosis: | 2.589 | Cond. No. | 91.4 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:55:57 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.061 |
Model: | OLS | Adj. R-squared: | -0.011 |
Method: | Least Squares | F-statistic: | 0.8505 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.373 |
Time: | 03:55:57 | Log-Likelihood: | -74.825 |
No. Observations: | 15 | AIC: | 153.6 |
Df Residuals: | 13 | BIC: | 155.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -35.0467 | 139.913 | -0.250 | 0.806 | -337.311 267.217 |
expression | 21.9248 | 23.773 | 0.922 | 0.373 | -29.435 73.284 |
Omnibus: | 0.348 | Durbin-Watson: | 1.442 |
Prob(Omnibus): | 0.840 | Jarque-Bera (JB): | 0.456 |
Skew: | -0.275 | Prob(JB): | 0.796 |
Kurtosis: | 2.347 | Cond. No. | 86.0 |