AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.932 | 0.180 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.683 |
Model: | OLS | Adj. R-squared: | 0.633 |
Method: | Least Squares | F-statistic: | 13.63 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.60e-05 |
Time: | 05:19:26 | Log-Likelihood: | -99.903 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 19 | BIC: | 212.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -65.0693 | 127.740 | -0.509 | 0.616 | -332.433 202.294 |
C(dose)[T.1] | -49.5239 | 244.064 | -0.203 | 0.841 | -560.355 461.307 |
expression | 15.8799 | 16.988 | 0.935 | 0.362 | -19.677 51.437 |
expression:C(dose)[T.1] | 12.9335 | 31.869 | 0.406 | 0.689 | -53.768 79.635 |
Omnibus: | 0.294 | Durbin-Watson: | 2.111 |
Prob(Omnibus): | 0.863 | Jarque-Bera (JB): | 0.145 |
Skew: | 0.176 | Prob(JB): | 0.930 |
Kurtosis: | 2.831 | Cond. No. | 526. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.680 |
Model: | OLS | Adj. R-squared: | 0.648 |
Method: | Least Squares | F-statistic: | 21.25 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.13e-05 |
Time: | 05:19:26 | Log-Likelihood: | -100.00 |
No. Observations: | 23 | AIC: | 206.0 |
Df Residuals: | 20 | BIC: | 209.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -92.6751 | 105.841 | -0.876 | 0.392 | -313.456 128.106 |
C(dose)[T.1] | 49.4588 | 8.827 | 5.603 | 0.000 | 31.045 67.872 |
expression | 19.5552 | 14.070 | 1.390 | 0.180 | -9.794 48.905 |
Omnibus: | 0.146 | Durbin-Watson: | 2.129 |
Prob(Omnibus): | 0.930 | Jarque-Bera (JB): | 0.151 |
Skew: | 0.141 | Prob(JB): | 0.927 |
Kurtosis: | 2.719 | Cond. No. | 196. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:19:26 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.178 |
Model: | OLS | Adj. R-squared: | 0.138 |
Method: | Least Squares | F-statistic: | 4.536 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0452 |
Time: | 05:19:26 | Log-Likelihood: | -110.86 |
No. Observations: | 23 | AIC: | 225.7 |
Df Residuals: | 21 | BIC: | 228.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -258.5642 | 158.964 | -1.627 | 0.119 | -589.148 72.020 |
expression | 44.4751 | 20.882 | 2.130 | 0.045 | 1.049 87.901 |
Omnibus: | 1.167 | Durbin-Watson: | 2.449 |
Prob(Omnibus): | 0.558 | Jarque-Bera (JB): | 0.959 |
Skew: | 0.258 | Prob(JB): | 0.619 |
Kurtosis: | 2.143 | Cond. No. | 188. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.066 | 0.176 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.581 |
Model: | OLS | Adj. R-squared: | 0.467 |
Method: | Least Squares | F-statistic: | 5.087 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0189 |
Time: | 05:19:26 | Log-Likelihood: | -68.774 |
No. Observations: | 15 | AIC: | 145.5 |
Df Residuals: | 11 | BIC: | 148.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -250.4922 | 171.406 | -1.461 | 0.172 | -627.754 126.769 |
C(dose)[T.1] | 404.4870 | 305.439 | 1.324 | 0.212 | -267.780 1076.754 |
expression | 43.3147 | 23.309 | 1.858 | 0.090 | -7.989 94.618 |
expression:C(dose)[T.1] | -48.4298 | 41.701 | -1.161 | 0.270 | -140.213 43.354 |
Omnibus: | 4.867 | Durbin-Watson: | 1.224 |
Prob(Omnibus): | 0.088 | Jarque-Bera (JB): | 2.391 |
Skew: | -0.923 | Prob(JB): | 0.303 |
Kurtosis: | 3.646 | Cond. No. | 392. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.530 |
Model: | OLS | Adj. R-squared: | 0.451 |
Method: | Least Squares | F-statistic: | 6.759 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0108 |
Time: | 05:19:26 | Log-Likelihood: | -69.641 |
No. Observations: | 15 | AIC: | 145.3 |
Df Residuals: | 12 | BIC: | 147.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -139.4305 | 144.301 | -0.966 | 0.353 | -453.835 174.974 |
C(dose)[T.1] | 50.1545 | 14.553 | 3.446 | 0.005 | 18.446 81.863 |
expression | 28.1832 | 19.607 | 1.437 | 0.176 | -14.536 70.903 |
Omnibus: | 3.608 | Durbin-Watson: | 0.858 |
Prob(Omnibus): | 0.165 | Jarque-Bera (JB): | 2.053 |
Skew: | -0.906 | Prob(JB): | 0.358 |
Kurtosis: | 3.058 | Cond. No. | 149. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:19:26 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.064 |
Model: | OLS | Adj. R-squared: | -0.008 |
Method: | Least Squares | F-statistic: | 0.8933 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.362 |
Time: | 05:19:26 | Log-Likelihood: | -74.802 |
No. Observations: | 15 | AIC: | 153.6 |
Df Residuals: | 13 | BIC: | 155.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -90.0236 | 194.596 | -0.463 | 0.651 | -510.423 330.376 |
expression | 25.0886 | 26.544 | 0.945 | 0.362 | -32.257 82.434 |
Omnibus: | 5.035 | Durbin-Watson: | 1.636 |
Prob(Omnibus): | 0.081 | Jarque-Bera (JB): | 1.783 |
Skew: | 0.439 | Prob(JB): | 0.410 |
Kurtosis: | 1.558 | Cond. No. | 148. |