AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.185 | 0.089 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.697 |
Model: | OLS | Adj. R-squared: | 0.649 |
Method: | Least Squares | F-statistic: | 14.59 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.62e-05 |
Time: | 05:08:36 | Log-Likelihood: | -99.363 |
No. Observations: | 23 | AIC: | 206.7 |
Df Residuals: | 19 | BIC: | 211.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 103.0867 | 38.959 | 2.646 | 0.016 | 21.544 184.629 |
C(dose)[T.1] | 51.2215 | 55.655 | 0.920 | 0.369 | -65.266 167.709 |
expression | -11.4241 | 9.005 | -1.269 | 0.220 | -30.272 7.424 |
expression:C(dose)[T.1] | 0.3055 | 12.974 | 0.024 | 0.981 | -26.850 27.461 |
Omnibus: | 0.382 | Durbin-Watson: | 2.097 |
Prob(Omnibus): | 0.826 | Jarque-Bera (JB): | 0.531 |
Skew: | 0.180 | Prob(JB): | 0.767 |
Kurtosis: | 2.348 | Cond. No. | 77.5 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.697 |
Model: | OLS | Adj. R-squared: | 0.667 |
Method: | Least Squares | F-statistic: | 23.03 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.47e-06 |
Time: | 05:08:36 | Log-Likelihood: | -99.363 |
No. Observations: | 23 | AIC: | 204.7 |
Df Residuals: | 20 | BIC: | 208.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 102.4570 | 27.616 | 3.710 | 0.001 | 44.852 160.062 |
C(dose)[T.1] | 52.5172 | 8.158 | 6.437 | 0.000 | 35.500 69.535 |
expression | -11.2769 | 6.319 | -1.785 | 0.089 | -24.458 1.904 |
Omnibus: | 0.388 | Durbin-Watson: | 2.095 |
Prob(Omnibus): | 0.824 | Jarque-Bera (JB): | 0.535 |
Skew: | 0.185 | Prob(JB): | 0.765 |
Kurtosis: | 2.351 | Cond. No. | 30.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:08:36 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.070 |
Model: | OLS | Adj. R-squared: | 0.026 |
Method: | Least Squares | F-statistic: | 1.581 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.222 |
Time: | 05:08:36 | Log-Likelihood: | -112.27 |
No. Observations: | 23 | AIC: | 228.5 |
Df Residuals: | 21 | BIC: | 230.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 137.2947 | 46.320 | 2.964 | 0.007 | 40.967 233.622 |
expression | -13.5675 | 10.791 | -1.257 | 0.222 | -36.008 8.873 |
Omnibus: | 2.188 | Durbin-Watson: | 2.947 |
Prob(Omnibus): | 0.335 | Jarque-Bera (JB): | 1.398 |
Skew: | 0.344 | Prob(JB): | 0.497 |
Kurtosis: | 2.007 | Cond. No. | 30.1 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.972 | 0.344 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.546 |
Model: | OLS | Adj. R-squared: | 0.422 |
Method: | Least Squares | F-statistic: | 4.404 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0288 |
Time: | 05:08:36 | Log-Likelihood: | -69.383 |
No. Observations: | 15 | AIC: | 146.8 |
Df Residuals: | 11 | BIC: | 149.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 45.9313 | 54.244 | 0.847 | 0.415 | -73.458 165.321 |
C(dose)[T.1] | 132.8246 | 69.387 | 1.914 | 0.082 | -19.895 285.544 |
expression | 6.3387 | 15.668 | 0.405 | 0.694 | -28.147 40.824 |
expression:C(dose)[T.1] | -21.9165 | 18.885 | -1.161 | 0.270 | -63.483 19.650 |
Omnibus: | 1.178 | Durbin-Watson: | 0.839 |
Prob(Omnibus): | 0.555 | Jarque-Bera (JB): | 0.837 |
Skew: | -0.246 | Prob(JB): | 0.658 |
Kurtosis: | 1.952 | Cond. No. | 55.1 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.490 |
Model: | OLS | Adj. R-squared: | 0.405 |
Method: | Least Squares | F-statistic: | 5.766 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0176 |
Time: | 05:08:36 | Log-Likelihood: | -70.249 |
No. Observations: | 15 | AIC: | 146.5 |
Df Residuals: | 12 | BIC: | 148.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 97.0939 | 32.057 | 3.029 | 0.010 | 27.247 166.941 |
C(dose)[T.1] | 54.4188 | 16.039 | 3.393 | 0.005 | 19.474 89.364 |
expression | -8.7472 | 8.873 | -0.986 | 0.344 | -28.079 10.585 |
Omnibus: | 2.563 | Durbin-Watson: | 0.859 |
Prob(Omnibus): | 0.278 | Jarque-Bera (JB): | 1.914 |
Skew: | -0.824 | Prob(JB): | 0.384 |
Kurtosis: | 2.411 | Cond. No. | 17.5 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:08:36 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.001 |
Model: | OLS | Adj. R-squared: | -0.076 |
Method: | Least Squares | F-statistic: | 0.01127 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.917 |
Time: | 05:08:36 | Log-Likelihood: | -75.294 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 89.2301 | 43.000 | 2.075 | 0.058 | -3.665 182.125 |
expression | 1.1959 | 11.263 | 0.106 | 0.917 | -23.136 25.528 |
Omnibus: | 0.699 | Durbin-Watson: | 1.597 |
Prob(Omnibus): | 0.705 | Jarque-Bera (JB): | 0.618 |
Skew: | 0.066 | Prob(JB): | 0.734 |
Kurtosis: | 2.015 | Cond. No. | 17.2 |