AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.010 | 0.327 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.671 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 12.91 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.88e-05 |
Time: | 04:34:28 | Log-Likelihood: | -100.33 |
No. Observations: | 23 | AIC: | 208.7 |
Df Residuals: | 19 | BIC: | 213.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 143.6978 | 214.171 | 0.671 | 0.510 | -304.567 591.963 |
C(dose)[T.1] | 223.0508 | 328.615 | 0.679 | 0.505 | -464.749 910.851 |
expression | -9.4933 | 22.711 | -0.418 | 0.681 | -57.028 38.041 |
expression:C(dose)[T.1] | -18.8864 | 35.496 | -0.532 | 0.601 | -93.181 55.408 |
Omnibus: | 0.587 | Durbin-Watson: | 1.735 |
Prob(Omnibus): | 0.746 | Jarque-Bera (JB): | 0.651 |
Skew: | 0.173 | Prob(JB): | 0.722 |
Kurtosis: | 2.252 | Cond. No. | 884. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.666 |
Model: | OLS | Adj. R-squared: | 0.633 |
Method: | Least Squares | F-statistic: | 19.93 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.73e-05 |
Time: | 04:34:28 | Log-Likelihood: | -100.50 |
No. Observations: | 23 | AIC: | 207.0 |
Df Residuals: | 20 | BIC: | 210.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 216.5783 | 161.664 | 1.340 | 0.195 | -120.647 553.804 |
C(dose)[T.1] | 48.2872 | 9.923 | 4.866 | 0.000 | 27.589 68.986 |
expression | -17.2248 | 17.138 | -1.005 | 0.327 | -52.975 18.525 |
Omnibus: | 0.754 | Durbin-Watson: | 1.756 |
Prob(Omnibus): | 0.686 | Jarque-Bera (JB): | 0.740 |
Skew: | 0.192 | Prob(JB): | 0.691 |
Kurtosis: | 2.210 | Cond. No. | 356. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:34:28 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.270 |
Model: | OLS | Adj. R-squared: | 0.236 |
Method: | Least Squares | F-statistic: | 7.781 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0110 |
Time: | 04:34:28 | Log-Likelihood: | -109.48 |
No. Observations: | 23 | AIC: | 223.0 |
Df Residuals: | 21 | BIC: | 225.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 631.8567 | 198.029 | 3.191 | 0.004 | 220.033 1043.681 |
expression | -59.4572 | 21.314 | -2.790 | 0.011 | -103.783 -15.131 |
Omnibus: | 2.059 | Durbin-Watson: | 2.510 |
Prob(Omnibus): | 0.357 | Jarque-Bera (JB): | 1.391 |
Skew: | 0.363 | Prob(JB): | 0.499 |
Kurtosis: | 2.038 | Cond. No. | 302. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
5.234 | 0.041 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.640 |
Model: | OLS | Adj. R-squared: | 0.541 |
Method: | Least Squares | F-statistic: | 6.509 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00858 |
Time: | 04:34:28 | Log-Likelihood: | -67.645 |
No. Observations: | 15 | AIC: | 143.3 |
Df Residuals: | 11 | BIC: | 146.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 373.9913 | 241.375 | 1.549 | 0.150 | -157.271 905.254 |
C(dose)[T.1] | 360.7001 | 386.067 | 0.934 | 0.370 | -489.027 1210.428 |
expression | -32.1099 | 25.262 | -1.271 | 0.230 | -87.710 23.490 |
expression:C(dose)[T.1] | -34.9670 | 41.309 | -0.846 | 0.415 | -125.888 55.954 |
Omnibus: | 3.448 | Durbin-Watson: | 1.557 |
Prob(Omnibus): | 0.178 | Jarque-Bera (JB): | 1.228 |
Skew: | -0.141 | Prob(JB): | 0.541 |
Kurtosis: | 1.627 | Cond. No. | 694. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.616 |
Model: | OLS | Adj. R-squared: | 0.552 |
Method: | Least Squares | F-statistic: | 9.633 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00320 |
Time: | 04:34:29 | Log-Likelihood: | -68.118 |
No. Observations: | 15 | AIC: | 142.2 |
Df Residuals: | 12 | BIC: | 144.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 498.8338 | 188.804 | 2.642 | 0.021 | 87.465 910.203 |
C(dose)[T.1] | 34.1492 | 14.688 | 2.325 | 0.038 | 2.146 66.152 |
expression | -45.1861 | 19.750 | -2.288 | 0.041 | -88.218 -2.154 |
Omnibus: | 3.210 | Durbin-Watson: | 1.740 |
Prob(Omnibus): | 0.201 | Jarque-Bera (JB): | 1.347 |
Skew: | -0.323 | Prob(JB): | 0.510 |
Kurtosis: | 1.681 | Cond. No. | 274. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:34:29 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.443 |
Model: | OLS | Adj. R-squared: | 0.400 |
Method: | Least Squares | F-statistic: | 10.35 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00674 |
Time: | 04:34:29 | Log-Likelihood: | -70.907 |
No. Observations: | 15 | AIC: | 145.8 |
Df Residuals: | 13 | BIC: | 147.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 709.6872 | 191.609 | 3.704 | 0.003 | 295.742 1123.632 |
expression | -65.7461 | 20.434 | -3.218 | 0.007 | -109.891 -21.602 |
Omnibus: | 0.043 | Durbin-Watson: | 2.262 |
Prob(Omnibus): | 0.979 | Jarque-Bera (JB): | 0.101 |
Skew: | -0.033 | Prob(JB): | 0.951 |
Kurtosis: | 2.604 | Cond. No. | 240. |