AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.068 0.166 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.697
Model: OLS Adj. R-squared: 0.649
Method: Least Squares F-statistic: 14.56
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.66e-05
Time: 04:44:39 Log-Likelihood: -99.378
No. Observations: 23 AIC: 206.8
Df Residuals: 19 BIC: 211.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -36.1480 53.497 -0.676 0.507 -148.119 75.823
C(dose)[T.1] 127.9001 71.778 1.782 0.091 -22.332 278.133
expression 22.6448 13.329 1.699 0.106 -5.253 50.542
expression:C(dose)[T.1] -18.2186 18.832 -0.967 0.345 -57.635 21.198
Omnibus: 0.899 Durbin-Watson: 1.931
Prob(Omnibus): 0.638 Jarque-Bera (JB): 0.898
Skew: -0.369 Prob(JB): 0.638
Kurtosis: 2.375 Cond. No. 91.0

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.682
Model: OLS Adj. R-squared: 0.650
Method: Least Squares F-statistic: 21.44
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.06e-05
Time: 04:44:39 Log-Likelihood: -99.931
No. Observations: 23 AIC: 205.9
Df Residuals: 20 BIC: 209.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 0.2664 37.954 0.007 0.994 -78.903 79.436
C(dose)[T.1] 59.0416 9.243 6.387 0.000 39.760 78.323
expression 13.5187 9.401 1.438 0.166 -6.092 33.129
Omnibus: 0.971 Durbin-Watson: 1.780
Prob(Omnibus): 0.615 Jarque-Bera (JB): 0.822
Skew: -0.176 Prob(JB): 0.663
Kurtosis: 2.143 Cond. No. 37.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:44:39 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.033
Model: OLS Adj. R-squared: -0.013
Method: Least Squares F-statistic: 0.7191
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.406
Time: 04:44:39 Log-Likelihood: -112.72
No. Observations: 23 AIC: 229.4
Df Residuals: 21 BIC: 231.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 126.1332 55.193 2.285 0.033 11.353 240.913
expression -12.2522 14.448 -0.848 0.406 -42.299 17.794
Omnibus: 2.413 Durbin-Watson: 2.490
Prob(Omnibus): 0.299 Jarque-Bera (JB): 1.417
Skew: 0.319 Prob(JB): 0.492
Kurtosis: 1.964 Cond. No. 31.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.414 0.532 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.469
Model: OLS Adj. R-squared: 0.325
Method: Least Squares F-statistic: 3.244
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0640
Time: 04:44:39 Log-Likelihood: -70.547
No. Observations: 15 AIC: 149.1
Df Residuals: 11 BIC: 151.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 99.9879 80.615 1.240 0.241 -77.446 277.421
C(dose)[T.1] 75.0311 140.234 0.535 0.603 -233.622 383.684
expression -6.7518 16.538 -0.408 0.691 -43.151 29.647
expression:C(dose)[T.1] -6.7212 31.112 -0.216 0.833 -75.198 61.756
Omnibus: 1.500 Durbin-Watson: 0.990
Prob(Omnibus): 0.472 Jarque-Bera (JB): 1.222
Skew: -0.580 Prob(JB): 0.543
Kurtosis: 2.220 Cond. No. 101.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.467
Model: OLS Adj. R-squared: 0.378
Method: Least Squares F-statistic: 5.261
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0229
Time: 04:44:39 Log-Likelihood: -70.578
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 109.1459 65.790 1.659 0.123 -34.197 252.489
C(dose)[T.1] 44.9733 16.808 2.676 0.020 8.351 81.595
expression -8.6508 13.440 -0.644 0.532 -37.934 20.632
Omnibus: 1.791 Durbin-Watson: 1.023
Prob(Omnibus): 0.408 Jarque-Bera (JB): 1.412
Skew: -0.664 Prob(JB): 0.494
Kurtosis: 2.298 Cond. No. 41.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:44:39 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.149
Model: OLS Adj. R-squared: 0.084
Method: Least Squares F-statistic: 2.281
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.155
Time: 04:44:39 Log-Likelihood: -74.088
No. Observations: 15 AIC: 152.2
Df Residuals: 13 BIC: 153.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 197.1687 69.166 2.851 0.014 47.744 346.593
expression -22.6880 15.022 -1.510 0.155 -55.140 9.764
Omnibus: 0.157 Durbin-Watson: 1.581
Prob(Omnibus): 0.925 Jarque-Bera (JB): 0.366
Skew: 0.089 Prob(JB): 0.833
Kurtosis: 2.256 Cond. No. 35.6