AIM Score vs. Gene Expression 
		Full X range:
		
 
		 
			
		
		Auto X range:
		
 
		
		Group Comparisons: Boxplots
		 
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 2.068 | 0.166 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.697 | 
  | Model: | OLS | Adj. R-squared: | 0.649 | 
  | Method: | Least Squares | F-statistic: | 14.56 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 3.66e-05 | 
  | Time: | 03:43:27 | Log-Likelihood: | -99.378 | 
  | No. Observations: | 23 | AIC: | 206.8 | 
  | Df Residuals: | 19 | BIC: | 211.3 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -36.1480 | 53.497 | -0.676 | 0.507 | -148.119    75.823 | 
  | C(dose)[T.1] | 127.9001 | 71.778 | 1.782 | 0.091 | -22.332   278.133 | 
  | expression | 22.6448 | 13.329 | 1.699 | 0.106 | -5.253    50.542 | 
  | expression:C(dose)[T.1] | -18.2186 | 18.832 | -0.967 | 0.345 | -57.635    21.198 | 
  | Omnibus: | 0.899 | Durbin-Watson: | 1.931 | 
  | Prob(Omnibus): | 0.638 | Jarque-Bera (JB): | 0.898 | 
  | Skew: | -0.369 | Prob(JB): | 0.638 | 
  | Kurtosis: | 2.375 | Cond. No. | 91.0 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.682 | 
  | Model: | OLS | Adj. R-squared: | 0.650 | 
  | Method: | Least Squares | F-statistic: | 21.44 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 1.06e-05 | 
  | Time: | 03:43:27 | Log-Likelihood: | -99.931 | 
  | No. Observations: | 23 | AIC: | 205.9 | 
  | Df Residuals: | 20 | BIC: | 209.3 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 0.2664 | 37.954 | 0.007 | 0.994 | -78.903    79.436 | 
  | C(dose)[T.1] | 59.0416 | 9.243 | 6.387 | 0.000 | 39.760    78.323 | 
  | expression | 13.5187 | 9.401 | 1.438 | 0.166 | -6.092    33.129 | 
  | Omnibus: | 0.971 | Durbin-Watson: | 1.780 | 
  | Prob(Omnibus): | 0.615 | Jarque-Bera (JB): | 0.822 | 
  | Skew: | -0.176 | Prob(JB): | 0.663 | 
  | Kurtosis: | 2.143 | Cond. No. | 37.5 | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.649 | 
  | Model: | OLS | Adj. R-squared: | 0.632 | 
  | Method: | Least Squares | F-statistic: | 38.84 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 3.51e-06 | 
  | Time: | 03:43:27 | Log-Likelihood: | -101.06 | 
  | No. Observations: | 23 | AIC: | 206.1 | 
  | Df Residuals: | 21 | BIC: | 208.4 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900    66.517 | 
  | C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539    71.135 | 
  | Omnibus: | 0.322 | Durbin-Watson: | 1.888 | 
  | Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 | 
  | Skew: | 0.060 | Prob(JB): | 0.785 | 
  | Kurtosis: | 2.299 | Cond. No. | 2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.033 | 
  | Model: | OLS | Adj. R-squared: | -0.013 | 
  | Method: | Least Squares | F-statistic: | 0.7191 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.406 | 
  | Time: | 03:43:27 | Log-Likelihood: | -112.72 | 
  | No. Observations: | 23 | AIC: | 229.4 | 
  | Df Residuals: | 21 | BIC: | 231.7 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 126.1332 | 55.193 | 2.285 | 0.033 | 11.353   240.913 | 
  | expression | -12.2522 | 14.448 | -0.848 | 0.406 | -42.299    17.794 | 
  | Omnibus: | 2.413 | Durbin-Watson: | 2.490 | 
  | Prob(Omnibus): | 0.299 | Jarque-Bera (JB): | 1.417 | 
  | Skew: | 0.319 | Prob(JB): | 0.492 | 
  | Kurtosis: | 1.964 | Cond. No. | 31.7 | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.414 | 0.532 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.469 | 
  | Model: | OLS | Adj. R-squared: | 0.325 | 
  | Method: | Least Squares | F-statistic: | 3.244 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0640 | 
  | Time: | 03:43:27 | Log-Likelihood: | -70.547 | 
  | No. Observations: | 15 | AIC: | 149.1 | 
  | Df Residuals: | 11 | BIC: | 151.9 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 99.9879 | 80.615 | 1.240 | 0.241 | -77.446   277.421 | 
  | C(dose)[T.1] | 75.0311 | 140.234 | 0.535 | 0.603 | -233.622   383.684 | 
  | expression | -6.7518 | 16.538 | -0.408 | 0.691 | -43.151    29.647 | 
  | expression:C(dose)[T.1] | -6.7212 | 31.112 | -0.216 | 0.833 | -75.198    61.756 | 
  | Omnibus: | 1.500 | Durbin-Watson: | 0.990 | 
  | Prob(Omnibus): | 0.472 | Jarque-Bera (JB): | 1.222 | 
  | Skew: | -0.580 | Prob(JB): | 0.543 | 
  | Kurtosis: | 2.220 | Cond. No. | 101. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.467 | 
  | Model: | OLS | Adj. R-squared: | 0.378 | 
  | Method: | Least Squares | F-statistic: | 5.261 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0229 | 
  | Time: | 03:43:27 | Log-Likelihood: | -70.578 | 
  | No. Observations: | 15 | AIC: | 147.2 | 
  | Df Residuals: | 12 | BIC: | 149.3 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 109.1459 | 65.790 | 1.659 | 0.123 | -34.197   252.489 | 
  | C(dose)[T.1] | 44.9733 | 16.808 | 2.676 | 0.020 | 8.351    81.595 | 
  | expression | -8.6508 | 13.440 | -0.644 | 0.532 | -37.934    20.632 | 
  | Omnibus: | 1.791 | Durbin-Watson: | 1.023 | 
  | Prob(Omnibus): | 0.408 | Jarque-Bera (JB): | 1.412 | 
  | Skew: | -0.664 | Prob(JB): | 0.494 | 
  | Kurtosis: | 2.298 | Cond. No. | 41.5 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.406 | 
  | Method: | Least Squares | F-statistic: | 10.58 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00629 | 
  | Time: | 03:43:27 | Log-Likelihood: | -70.833 | 
  | No. Observations: | 15 | AIC: | 145.7 | 
  | Df Residuals: | 13 | BIC: | 147.1 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570    91.287 | 
  | C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527    81.866 | 
  | Omnibus: | 2.713 | Durbin-Watson: | 0.810 | 
  | Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 | 
  | Skew: | -0.843 | Prob(JB): | 0.393 | 
  | Kurtosis: | 2.619 | Cond. No. | 2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.149 | 
  | Model: | OLS | Adj. R-squared: | 0.084 | 
  | Method: | Least Squares | F-statistic: | 2.281 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.155 | 
  | Time: | 03:43:27 | Log-Likelihood: | -74.088 | 
  | No. Observations: | 15 | AIC: | 152.2 | 
  | Df Residuals: | 13 | BIC: | 153.6 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 197.1687 | 69.166 | 2.851 | 0.014 | 47.744   346.593 | 
  | expression | -22.6880 | 15.022 | -1.510 | 0.155 | -55.140     9.764 | 
  | Omnibus: | 0.157 | Durbin-Watson: | 1.581 | 
  | Prob(Omnibus): | 0.925 | Jarque-Bera (JB): | 0.366 | 
  | Skew: | 0.089 | Prob(JB): | 0.833 | 
  | Kurtosis: | 2.256 | Cond. No. | 35.6 |