AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.163 | 0.690 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.676 |
Model: | OLS | Adj. R-squared: | 0.625 |
Method: | Least Squares | F-statistic: | 13.21 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.82e-05 |
Time: | 04:06:39 | Log-Likelihood: | -100.15 |
No. Observations: | 23 | AIC: | 208.3 |
Df Residuals: | 19 | BIC: | 212.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -70.2426 | 381.281 | -0.184 | 0.856 | -868.273 727.788 |
C(dose)[T.1] | 870.4505 | 687.259 | 1.267 | 0.221 | -567.999 2308.899 |
expression | 12.8845 | 39.469 | 0.326 | 0.748 | -69.726 95.495 |
expression:C(dose)[T.1] | -83.5750 | 70.447 | -1.186 | 0.250 | -231.022 63.872 |
Omnibus: | 0.297 | Durbin-Watson: | 1.863 |
Prob(Omnibus): | 0.862 | Jarque-Bera (JB): | 0.472 |
Skew: | -0.122 | Prob(JB): | 0.790 |
Kurtosis: | 2.342 | Cond. No. | 1.88e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 18.73 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.61e-05 |
Time: | 04:06:39 | Log-Likelihood: | -100.97 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 20 | BIC: | 211.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 183.1564 | 319.037 | 0.574 | 0.572 | -482.343 848.656 |
C(dose)[T.1] | 55.1998 | 9.875 | 5.590 | 0.000 | 34.601 75.799 |
expression | -13.3501 | 33.024 | -0.404 | 0.690 | -82.237 55.537 |
Omnibus: | 0.243 | Durbin-Watson: | 1.961 |
Prob(Omnibus): | 0.885 | Jarque-Bera (JB): | 0.434 |
Skew: | 0.115 | Prob(JB): | 0.805 |
Kurtosis: | 2.368 | Cond. No. | 720. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:06:39 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.108 |
Model: | OLS | Adj. R-squared: | 0.066 |
Method: | Least Squares | F-statistic: | 2.544 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.126 |
Time: | 04:06:39 | Log-Likelihood: | -111.79 |
No. Observations: | 23 | AIC: | 227.6 |
Df Residuals: | 21 | BIC: | 229.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -628.1439 | 443.822 | -1.415 | 0.172 | -1551.121 294.834 |
expression | 72.7824 | 45.628 | 1.595 | 0.126 | -22.107 167.672 |
Omnibus: | 0.773 | Durbin-Watson: | 2.432 |
Prob(Omnibus): | 0.680 | Jarque-Bera (JB): | 0.798 |
Skew: | 0.289 | Prob(JB): | 0.671 |
Kurtosis: | 2.294 | Cond. No. | 640. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.037 | 0.851 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.455 |
Model: | OLS | Adj. R-squared: | 0.306 |
Method: | Least Squares | F-statistic: | 3.059 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0735 |
Time: | 04:06:39 | Log-Likelihood: | -70.750 |
No. Observations: | 15 | AIC: | 149.5 |
Df Residuals: | 11 | BIC: | 152.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 68.7898 | 490.497 | 0.140 | 0.891 | -1010.787 1148.366 |
C(dose)[T.1] | 331.9869 | 948.928 | 0.350 | 0.733 | -1756.590 2420.564 |
expression | -0.1397 | 50.325 | -0.003 | 0.998 | -110.904 110.625 |
expression:C(dose)[T.1] | -28.6619 | 96.493 | -0.297 | 0.772 | -241.041 183.717 |
Omnibus: | 2.798 | Durbin-Watson: | 0.741 |
Prob(Omnibus): | 0.247 | Jarque-Bera (JB): | 1.882 |
Skew: | -0.852 | Prob(JB): | 0.390 |
Kurtosis: | 2.670 | Cond. No. | 1.40e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.359 |
Method: | Least Squares | F-statistic: | 4.918 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0275 |
Time: | 04:06:39 | Log-Likelihood: | -70.810 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 144.7540 | 402.336 | 0.360 | 0.725 | -731.860 1021.368 |
C(dose)[T.1] | 50.1656 | 16.504 | 3.040 | 0.010 | 14.206 86.125 |
expression | -7.9359 | 41.275 | -0.192 | 0.851 | -97.867 81.995 |
Omnibus: | 3.094 | Durbin-Watson: | 0.840 |
Prob(Omnibus): | 0.213 | Jarque-Bera (JB): | 2.087 |
Skew: | -0.900 | Prob(JB): | 0.352 |
Kurtosis: | 2.684 | Cond. No. | 510. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:06:39 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.027 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.3657 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.556 |
Time: | 04:06:40 | Log-Likelihood: | -75.092 |
No. Observations: | 15 | AIC: | 154.2 |
Df Residuals: | 13 | BIC: | 155.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -204.3363 | 492.866 | -0.415 | 0.685 | -1269.109 860.437 |
expression | 30.3811 | 50.237 | 0.605 | 0.556 | -78.149 138.911 |
Omnibus: | 1.243 | Durbin-Watson: | 1.483 |
Prob(Omnibus): | 0.537 | Jarque-Bera (JB): | 0.791 |
Skew: | 0.113 | Prob(JB): | 0.673 |
Kurtosis: | 1.898 | Cond. No. | 488. |