AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.003 | 0.956 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.594 |
Method: | Least Squares | F-statistic: | 11.72 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000142 |
Time: | 03:39:30 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 56.7171 | 160.432 | 0.354 | 0.728 | -279.071 392.505 |
C(dose)[T.1] | 70.1638 | 302.583 | 0.232 | 0.819 | -563.149 703.477 |
expression | -0.2875 | 18.373 | -0.016 | 0.988 | -38.743 38.168 |
expression:C(dose)[T.1] | -1.8383 | 33.655 | -0.055 | 0.957 | -72.279 68.602 |
Omnibus: | 0.265 | Durbin-Watson: | 1.886 |
Prob(Omnibus): | 0.876 | Jarque-Bera (JB): | 0.450 |
Skew: | 0.059 | Prob(JB): | 0.799 |
Kurtosis: | 2.325 | Cond. No. | 727. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 03:39:30 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 61.4975 | 131.063 | 0.469 | 0.644 | -211.895 334.890 |
C(dose)[T.1] | 53.6465 | 10.382 | 5.167 | 0.000 | 31.990 75.303 |
expression | -0.8354 | 15.005 | -0.056 | 0.956 | -32.136 30.465 |
Omnibus: | 0.300 | Durbin-Watson: | 1.895 |
Prob(Omnibus): | 0.861 | Jarque-Bera (JB): | 0.472 |
Skew: | 0.058 | Prob(JB): | 0.790 |
Kurtosis: | 2.308 | Cond. No. | 271. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:39:30 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.181 |
Model: | OLS | Adj. R-squared: | 0.142 |
Method: | Least Squares | F-statistic: | 4.630 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0432 |
Time: | 03:39:30 | Log-Likelihood: | -110.81 |
No. Observations: | 23 | AIC: | 225.6 |
Df Residuals: | 21 | BIC: | 227.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -282.3420 | 168.385 | -1.677 | 0.108 | -632.519 67.835 |
expression | 40.6702 | 18.901 | 2.152 | 0.043 | 1.364 79.976 |
Omnibus: | 2.379 | Durbin-Watson: | 2.363 |
Prob(Omnibus): | 0.304 | Jarque-Bera (JB): | 1.181 |
Skew: | 0.107 | Prob(JB): | 0.554 |
Kurtosis: | 1.911 | Cond. No. | 233. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.134 | 0.308 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.520 |
Model: | OLS | Adj. R-squared: | 0.389 |
Method: | Least Squares | F-statistic: | 3.974 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0383 |
Time: | 03:39:30 | Log-Likelihood: | -69.794 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 11 | BIC: | 150.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 239.9810 | 145.130 | 1.654 | 0.126 | -79.449 559.411 |
C(dose)[T.1] | -79.2898 | 174.059 | -0.456 | 0.658 | -462.392 303.812 |
expression | -26.3501 | 22.096 | -1.193 | 0.258 | -74.984 22.284 |
expression:C(dose)[T.1] | 19.5733 | 26.534 | 0.738 | 0.476 | -38.827 77.974 |
Omnibus: | 2.225 | Durbin-Watson: | 1.222 |
Prob(Omnibus): | 0.329 | Jarque-Bera (JB): | 1.679 |
Skew: | -0.762 | Prob(JB): | 0.432 |
Kurtosis: | 2.396 | Cond. No. | 221. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.496 |
Model: | OLS | Adj. R-squared: | 0.412 |
Method: | Least Squares | F-statistic: | 5.913 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0163 |
Time: | 03:39:30 | Log-Likelihood: | -70.156 |
No. Observations: | 15 | AIC: | 146.3 |
Df Residuals: | 12 | BIC: | 148.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 151.0921 | 79.336 | 1.904 | 0.081 | -21.767 323.951 |
C(dose)[T.1] | 48.6088 | 15.055 | 3.229 | 0.007 | 15.807 81.411 |
expression | -12.7761 | 11.999 | -1.065 | 0.308 | -38.919 13.367 |
Omnibus: | 2.306 | Durbin-Watson: | 0.982 |
Prob(Omnibus): | 0.316 | Jarque-Bera (JB): | 1.773 |
Skew: | -0.761 | Prob(JB): | 0.412 |
Kurtosis: | 2.280 | Cond. No. | 71.1 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:39:31 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.059 |
Model: | OLS | Adj. R-squared: | -0.014 |
Method: | Least Squares | F-statistic: | 0.8126 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.384 |
Time: | 03:39:31 | Log-Likelihood: | -74.845 |
No. Observations: | 15 | AIC: | 153.7 |
Df Residuals: | 13 | BIC: | 155.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 186.2805 | 103.211 | 1.805 | 0.094 | -36.694 409.255 |
expression | -14.1960 | 15.748 | -0.901 | 0.384 | -48.218 19.826 |
Omnibus: | 1.009 | Durbin-Watson: | 1.666 |
Prob(Omnibus): | 0.604 | Jarque-Bera (JB): | 0.782 |
Skew: | 0.240 | Prob(JB): | 0.676 |
Kurtosis: | 1.990 | Cond. No. | 70.2 |