AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.498 0.489 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.667
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 12.67
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.86e-05
Time: 03:41:06 Log-Likelihood: -100.47
No. Observations: 23 AIC: 208.9
Df Residuals: 19 BIC: 213.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 111.2765 57.620 1.931 0.069 -9.324 231.876
C(dose)[T.1] -9.7752 83.299 -0.117 0.908 -184.122 164.571
expression -12.3362 12.386 -0.996 0.332 -38.261 13.589
expression:C(dose)[T.1] 13.8230 19.235 0.719 0.481 -26.435 54.082
Omnibus: 0.243 Durbin-Watson: 1.891
Prob(Omnibus): 0.886 Jarque-Bera (JB): 0.436
Skew: 0.071 Prob(JB): 0.804
Kurtosis: 2.341 Cond. No. 110.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 19.20
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.22e-05
Time: 03:41:06 Log-Likelihood: -100.78
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 84.7589 43.717 1.939 0.067 -6.433 175.951
C(dose)[T.1] 49.6325 10.130 4.900 0.000 28.502 70.763
expression -6.6040 9.361 -0.705 0.489 -26.131 12.923
Omnibus: 0.028 Durbin-Watson: 1.839
Prob(Omnibus): 0.986 Jarque-Bera (JB): 0.190
Skew: 0.069 Prob(JB): 0.909
Kurtosis: 2.577 Cond. No. 47.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:41:06 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.247
Model: OLS Adj. R-squared: 0.211
Method: Least Squares F-statistic: 6.873
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0159
Time: 03:41:06 Log-Likelihood: -109.85
No. Observations: 23 AIC: 223.7
Df Residuals: 21 BIC: 226.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 212.1032 50.885 4.168 0.000 106.282 317.925
expression -30.3791 11.588 -2.622 0.016 -54.478 -6.280
Omnibus: 0.972 Durbin-Watson: 2.331
Prob(Omnibus): 0.615 Jarque-Bera (JB): 0.677
Skew: 0.406 Prob(JB): 0.713
Kurtosis: 2.784 Cond. No. 37.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.080 0.783 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.514
Model: OLS Adj. R-squared: 0.382
Method: Least Squares F-statistic: 3.882
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0407
Time: 03:41:06 Log-Likelihood: -69.884
No. Observations: 15 AIC: 147.8
Df Residuals: 11 BIC: 150.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 186.7476 113.842 1.640 0.129 -63.818 437.313
C(dose)[T.1] -141.1064 162.896 -0.866 0.405 -499.638 217.426
expression -27.9513 26.537 -1.053 0.315 -86.360 30.457
expression:C(dose)[T.1] 43.5022 36.748 1.184 0.261 -37.380 124.385
Omnibus: 1.093 Durbin-Watson: 0.747
Prob(Omnibus): 0.579 Jarque-Bera (JB): 0.950
Skew: -0.457 Prob(JB): 0.622
Kurtosis: 2.173 Cond. No. 133.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.361
Method: Least Squares F-statistic: 4.957
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0270
Time: 03:41:07 Log-Likelihood: -70.783
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 89.9060 80.483 1.117 0.286 -85.451 265.263
C(dose)[T.1] 50.7538 16.630 3.052 0.010 14.519 86.988
expression -5.2655 18.662 -0.282 0.783 -45.926 35.395
Omnibus: 3.279 Durbin-Watson: 0.793
Prob(Omnibus): 0.194 Jarque-Bera (JB): 2.034
Skew: -0.899 Prob(JB): 0.362
Kurtosis: 2.862 Cond. No. 48.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:41:07 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.027
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.3660
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.556
Time: 03:41:07 Log-Likelihood: -75.092
No. Observations: 15 AIC: 154.2
Df Residuals: 13 BIC: 155.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 33.3029 100.280 0.332 0.745 -183.339 249.945
expression 13.6367 22.541 0.605 0.556 -35.060 62.333
Omnibus: 0.058 Durbin-Watson: 1.457
Prob(Omnibus): 0.972 Jarque-Bera (JB): 0.212
Skew: -0.118 Prob(JB): 0.899
Kurtosis: 2.467 Cond. No. 46.7