AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.039 0.846 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.595
Method: Least Squares F-statistic: 11.78
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000138
Time: 04:19:49 Log-Likelihood: -101.02
No. Observations: 23 AIC: 210.0
Df Residuals: 19 BIC: 214.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 57.4088 100.247 0.573 0.574 -152.411 267.228
C(dose)[T.1] 81.5808 157.280 0.519 0.610 -247.610 410.772
expression -0.4276 13.368 -0.032 0.975 -28.407 27.552
expression:C(dose)[T.1] -3.6885 20.728 -0.178 0.861 -47.073 39.696
Omnibus: 0.334 Durbin-Watson: 1.902
Prob(Omnibus): 0.846 Jarque-Bera (JB): 0.491
Skew: 0.050 Prob(JB): 0.782
Kurtosis: 2.291 Cond. No. 338.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.55
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.78e-05
Time: 04:19:49 Log-Likelihood: -101.04
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 68.8911 74.839 0.921 0.368 -87.220 225.002
C(dose)[T.1] 53.6404 8.896 6.030 0.000 35.084 72.197
expression -1.9617 9.966 -0.197 0.846 -22.751 18.827
Omnibus: 0.368 Durbin-Watson: 1.852
Prob(Omnibus): 0.832 Jarque-Bera (JB): 0.512
Skew: 0.064 Prob(JB): 0.774
Kurtosis: 2.280 Cond. No. 132.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:19:49 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.013
Model: OLS Adj. R-squared: -0.034
Method: Least Squares F-statistic: 0.2759
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.605
Time: 04:19:49 Log-Likelihood: -112.95
No. Observations: 23 AIC: 229.9
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 15.8757 121.753 0.130 0.897 -237.324 269.075
expression 8.4462 16.080 0.525 0.605 -24.994 41.886
Omnibus: 2.768 Durbin-Watson: 2.495
Prob(Omnibus): 0.251 Jarque-Bera (JB): 1.459
Skew: 0.291 Prob(JB): 0.482
Kurtosis: 1.912 Cond. No. 131.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.054 0.044 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.702
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 8.648
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00312
Time: 04:19:49 Log-Likelihood: -66.214
No. Observations: 15 AIC: 140.4
Df Residuals: 11 BIC: 143.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -80.3468 188.970 -0.425 0.679 -496.268 335.574
C(dose)[T.1] -556.3572 317.214 -1.754 0.107 -1254.541 141.826
expression 19.0661 24.355 0.783 0.450 -34.538 72.670
expression:C(dose)[T.1] 71.2619 39.057 1.825 0.095 -14.702 157.226
Omnibus: 0.652 Durbin-Watson: 1.093
Prob(Omnibus): 0.722 Jarque-Bera (JB): 0.387
Skew: -0.365 Prob(JB): 0.824
Kurtosis: 2.707 Cond. No. 548.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.612
Model: OLS Adj. R-squared: 0.547
Method: Least Squares F-statistic: 9.469
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00340
Time: 04:19:49 Log-Likelihood: -68.197
No. Observations: 15 AIC: 142.4
Df Residuals: 12 BIC: 144.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -295.1075 161.545 -1.827 0.093 -647.084 56.869
C(dose)[T.1] 21.6343 18.017 1.201 0.253 -17.621 60.890
expression 46.7748 20.806 2.248 0.044 1.443 92.106
Omnibus: 0.187 Durbin-Watson: 1.314
Prob(Omnibus): 0.911 Jarque-Bera (JB): 0.387
Skew: 0.080 Prob(JB): 0.824
Kurtosis: 2.229 Cond. No. 202.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:19:49 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.566
Model: OLS Adj. R-squared: 0.532
Method: Least Squares F-statistic: 16.92
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00122
Time: 04:19:49 Log-Likelihood: -69.048
No. Observations: 15 AIC: 142.1
Df Residuals: 13 BIC: 143.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -420.6682 125.211 -3.360 0.005 -691.171 -150.166
expression 63.7742 15.503 4.114 0.001 30.282 97.267
Omnibus: 1.123 Durbin-Watson: 1.662
Prob(Omnibus): 0.570 Jarque-Bera (JB): 0.955
Skew: 0.520 Prob(JB): 0.620
Kurtosis: 2.330 Cond. No. 153.