AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.019 0.892 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.684
Model: OLS Adj. R-squared: 0.634
Method: Least Squares F-statistic: 13.71
Date: Tue, 28 Jan 2025 Prob (F-statistic): 5.38e-05
Time: 19:17:24 Log-Likelihood: -99.855
No. Observations: 23 AIC: 207.7
Df Residuals: 19 BIC: 212.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 75.8256 22.415 3.383 0.003 28.910 122.741
C(dose)[T.1] 0.9330 37.393 0.025 0.980 -77.331 79.197
expression -5.9528 5.955 -1.000 0.330 -18.416 6.510
expression:C(dose)[T.1] 13.9653 9.672 1.444 0.165 -6.279 34.210
Omnibus: 2.769 Durbin-Watson: 2.086
Prob(Omnibus): 0.250 Jarque-Bera (JB): 1.236
Skew: 0.025 Prob(JB): 0.539
Kurtosis: 1.866 Cond. No. 44.2

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.52
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.81e-05
Time: 19:17:24 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 56.6052 18.517 3.057 0.006 17.980 95.231
C(dose)[T.1] 53.4763 8.824 6.060 0.000 35.069 71.884
expression -0.6600 4.818 -0.137 0.892 -10.710 9.390
Omnibus: 0.257 Durbin-Watson: 1.924
Prob(Omnibus): 0.879 Jarque-Bera (JB): 0.444
Skew: 0.038 Prob(JB): 0.801
Kurtosis: 2.323 Cond. No. 17.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 19:17:24 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.006
Model: OLS Adj. R-squared: -0.042
Method: Least Squares F-statistic: 0.1179
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.735
Time: 19:17:24 Log-Likelihood: -113.04
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 69.6354 30.227 2.304 0.032 6.775 132.495
expression 2.7013 7.866 0.343 0.735 -13.656 19.059
Omnibus: 3.330 Durbin-Watson: 2.439
Prob(Omnibus): 0.189 Jarque-Bera (JB): 1.499
Skew: 0.237 Prob(JB): 0.473
Kurtosis: 1.843 Cond. No. 17.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
6.357 0.027 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.640
Model: OLS Adj. R-squared: 0.541
Method: Least Squares F-statistic: 6.510
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00857
Time: 19:17:24 Log-Likelihood: -67.644
No. Observations: 15 AIC: 143.3
Df Residuals: 11 BIC: 146.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 201.1318 111.319 1.807 0.098 -43.881 446.144
C(dose)[T.1] 56.1135 130.361 0.430 0.675 -230.810 343.037
expression -26.3451 21.851 -1.206 0.253 -74.439 21.749
expression:C(dose)[T.1] -0.7988 25.414 -0.031 0.975 -56.735 55.137
Omnibus: 0.214 Durbin-Watson: 0.758
Prob(Omnibus): 0.899 Jarque-Bera (JB): 0.159
Skew: -0.185 Prob(JB): 0.924
Kurtosis: 2.658 Cond. No. 156.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.640
Model: OLS Adj. R-squared: 0.580
Method: Least Squares F-statistic: 10.65
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00219
Time: 19:17:24 Log-Likelihood: -67.645
No. Observations: 15 AIC: 141.3
Df Residuals: 12 BIC: 143.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 204.1286 55.008 3.711 0.003 84.275 323.982
C(dose)[T.1] 52.0378 12.776 4.073 0.002 24.202 79.873
expression -26.9356 10.683 -2.521 0.027 -50.212 -3.659
Omnibus: 0.220 Durbin-Watson: 0.753
Prob(Omnibus): 0.896 Jarque-Bera (JB): 0.165
Skew: -0.190 Prob(JB): 0.921
Kurtosis: 2.656 Cond. No. 46.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 19:17:24 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.141
Model: OLS Adj. R-squared: 0.075
Method: Least Squares F-statistic: 2.142
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.167
Time: 19:17:24 Log-Likelihood: -74.156
No. Observations: 15 AIC: 152.3
Df Residuals: 13 BIC: 153.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 212.1856 81.525 2.603 0.022 36.061 388.311
expression -23.0971 15.781 -1.464 0.167 -57.191 10.997
Omnibus: 1.631 Durbin-Watson: 1.923
Prob(Omnibus): 0.442 Jarque-Bera (JB): 0.920
Skew: 0.187 Prob(JB): 0.631
Kurtosis: 1.845 Cond. No. 46.4