AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.416 | 0.048 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.748 |
Model: | OLS | Adj. R-squared: | 0.708 |
Method: | Least Squares | F-statistic: | 18.75 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.64e-06 |
Time: | 04:59:49 | Log-Likelihood: | -97.275 |
No. Observations: | 23 | AIC: | 202.5 |
Df Residuals: | 19 | BIC: | 207.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 96.3403 | 337.386 | 0.286 | 0.778 | -609.818 802.498 |
C(dose)[T.1] | 752.7887 | 433.830 | 1.735 | 0.099 | -155.228 1660.805 |
expression | -3.9770 | 31.843 | -0.125 | 0.902 | -70.626 62.672 |
expression:C(dose)[T.1] | -66.7429 | 41.111 | -1.623 | 0.121 | -152.790 19.304 |
Omnibus: | 0.098 | Durbin-Watson: | 2.329 |
Prob(Omnibus): | 0.952 | Jarque-Bera (JB): | 0.278 |
Skew: | 0.119 | Prob(JB): | 0.870 |
Kurtosis: | 2.517 | Cond. No. | 1.64e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.713 |
Model: | OLS | Adj. R-squared: | 0.684 |
Method: | Least Squares | F-statistic: | 24.79 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.85e-06 |
Time: | 04:59:49 | Log-Likelihood: | -98.769 |
No. Observations: | 23 | AIC: | 203.5 |
Df Residuals: | 20 | BIC: | 206.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 520.5457 | 221.990 | 2.345 | 0.029 | 57.483 983.609 |
C(dose)[T.1] | 48.5977 | 8.252 | 5.890 | 0.000 | 31.385 65.810 |
expression | -44.0196 | 20.948 | -2.101 | 0.048 | -87.717 -0.322 |
Omnibus: | 0.228 | Durbin-Watson: | 2.395 |
Prob(Omnibus): | 0.892 | Jarque-Bera (JB): | 0.425 |
Skew: | 0.056 | Prob(JB): | 0.809 |
Kurtosis: | 2.344 | Cond. No. | 596. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:59:49 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.214 |
Model: | OLS | Adj. R-squared: | 0.177 |
Method: | Least Squares | F-statistic: | 5.716 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0263 |
Time: | 04:59:49 | Log-Likelihood: | -110.34 |
No. Observations: | 23 | AIC: | 224.7 |
Df Residuals: | 21 | BIC: | 226.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 899.3047 | 342.870 | 2.623 | 0.016 | 186.267 1612.343 |
expression | -77.7422 | 32.517 | -2.391 | 0.026 | -145.366 -10.119 |
Omnibus: | 2.068 | Durbin-Watson: | 2.719 |
Prob(Omnibus): | 0.356 | Jarque-Bera (JB): | 1.181 |
Skew: | -0.202 | Prob(JB): | 0.554 |
Kurtosis: | 1.966 | Cond. No. | 570. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.096 | 0.066 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.644 |
Model: | OLS | Adj. R-squared: | 0.547 |
Method: | Least Squares | F-statistic: | 6.626 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00807 |
Time: | 04:59:49 | Log-Likelihood: | -67.559 |
No. Observations: | 15 | AIC: | 143.1 |
Df Residuals: | 11 | BIC: | 146.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 233.2027 | 227.821 | 1.024 | 0.328 | -268.228 734.633 |
C(dose)[T.1] | 489.1785 | 344.705 | 1.419 | 0.184 | -269.513 1247.870 |
expression | -17.8694 | 24.536 | -0.728 | 0.482 | -71.872 36.133 |
expression:C(dose)[T.1] | -48.8523 | 37.588 | -1.300 | 0.220 | -131.584 33.879 |
Omnibus: | 3.934 | Durbin-Watson: | 0.756 |
Prob(Omnibus): | 0.140 | Jarque-Bera (JB): | 2.631 |
Skew: | -1.020 | Prob(JB): | 0.268 |
Kurtosis: | 2.778 | Cond. No. | 624. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.589 |
Model: | OLS | Adj. R-squared: | 0.521 |
Method: | Least Squares | F-statistic: | 8.600 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00482 |
Time: | 04:59:49 | Log-Likelihood: | -68.630 |
No. Observations: | 15 | AIC: | 143.3 |
Df Residuals: | 12 | BIC: | 145.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 426.3011 | 177.597 | 2.400 | 0.033 | 39.351 813.251 |
C(dose)[T.1] | 41.5320 | 14.108 | 2.944 | 0.012 | 10.793 72.271 |
expression | -38.6842 | 19.114 | -2.024 | 0.066 | -80.330 2.961 |
Omnibus: | 3.323 | Durbin-Watson: | 0.924 |
Prob(Omnibus): | 0.190 | Jarque-Bera (JB): | 2.066 |
Skew: | -0.709 | Prob(JB): | 0.356 |
Kurtosis: | 1.862 | Cond. No. | 244. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:59:49 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.292 |
Model: | OLS | Adj. R-squared: | 0.238 |
Method: | Least Squares | F-statistic: | 5.368 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0375 |
Time: | 04:59:49 | Log-Likelihood: | -72.707 |
No. Observations: | 15 | AIC: | 149.4 |
Df Residuals: | 13 | BIC: | 150.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 586.9777 | 213.084 | 2.755 | 0.016 | 126.637 1047.319 |
expression | -53.7885 | 23.215 | -2.317 | 0.037 | -103.942 -3.635 |
Omnibus: | 0.537 | Durbin-Watson: | 2.015 |
Prob(Omnibus): | 0.765 | Jarque-Bera (JB): | 0.588 |
Skew: | -0.339 | Prob(JB): | 0.745 |
Kurtosis: | 2.306 | Cond. No. | 232. |