AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.001 0.971 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.594
Method: Least Squares F-statistic: 11.71
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000143
Time: 03:55:41 Log-Likelihood: -101.06
No. Observations: 23 AIC: 210.1
Df Residuals: 19 BIC: 214.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 53.3154 26.683 1.998 0.060 -2.533 109.164
C(dose)[T.1] 53.8309 34.492 1.561 0.135 -18.362 126.024
expression 0.2019 5.867 0.034 0.973 -12.077 12.481
expression:C(dose)[T.1] -0.1135 7.466 -0.015 0.988 -15.741 15.514
Omnibus: 0.313 Durbin-Watson: 1.889
Prob(Omnibus): 0.855 Jarque-Bera (JB): 0.480
Skew: 0.062 Prob(JB): 0.787
Kurtosis: 2.303 Cond. No. 50.8

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.50
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.83e-05
Time: 03:55:41 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 53.6254 16.778 3.196 0.005 18.626 88.625
C(dose)[T.1] 53.3245 8.776 6.076 0.000 35.018 71.631
expression 0.1318 3.537 0.037 0.971 -7.246 7.510
Omnibus: 0.300 Durbin-Watson: 1.891
Prob(Omnibus): 0.861 Jarque-Bera (JB): 0.472
Skew: 0.060 Prob(JB): 0.790
Kurtosis: 2.308 Cond. No. 18.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:55:41 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.046
Method: Least Squares F-statistic: 0.02713
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.871
Time: 03:55:41 Log-Likelihood: -113.09
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 75.4348 26.984 2.796 0.011 19.319 131.551
expression 0.9584 5.819 0.165 0.871 -11.143 13.059
Omnibus: 3.467 Durbin-Watson: 2.510
Prob(Omnibus): 0.177 Jarque-Bera (JB): 1.603
Skew: 0.290 Prob(JB): 0.449
Kurtosis: 1.844 Cond. No. 18.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.460 0.511 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.469
Model: OLS Adj. R-squared: 0.324
Method: Least Squares F-statistic: 3.241
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0642
Time: 03:55:41 Log-Likelihood: -70.550
No. Observations: 15 AIC: 149.1
Df Residuals: 11 BIC: 151.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 84.6100 34.318 2.465 0.031 9.076 160.144
C(dose)[T.1] 49.1235 58.399 0.841 0.418 -79.413 177.660
expression -4.0364 7.572 -0.533 0.605 -20.703 12.630
expression:C(dose)[T.1] 0.4192 12.317 0.034 0.973 -26.691 27.529
Omnibus: 2.770 Durbin-Watson: 0.905
Prob(Omnibus): 0.250 Jarque-Bera (JB): 1.789
Skew: -0.836 Prob(JB): 0.409
Kurtosis: 2.742 Cond. No. 45.0

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.469
Model: OLS Adj. R-squared: 0.381
Method: Least Squares F-statistic: 5.302
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0224
Time: 03:55:41 Log-Likelihood: -70.551
No. Observations: 15 AIC: 147.1
Df Residuals: 12 BIC: 149.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 83.9356 26.828 3.129 0.009 25.483 142.388
C(dose)[T.1] 51.0314 15.682 3.254 0.007 16.864 85.199
expression -3.8779 5.718 -0.678 0.511 -16.337 8.581
Omnibus: 2.699 Durbin-Watson: 0.903
Prob(Omnibus): 0.259 Jarque-Bera (JB): 1.739
Skew: -0.824 Prob(JB): 0.419
Kurtosis: 2.740 Cond. No. 17.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:55:41 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.008072
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.930
Time: 03:55:41 Log-Likelihood: -75.295
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 96.6746 34.986 2.763 0.016 21.091 172.258
expression -0.6671 7.425 -0.090 0.930 -16.708 15.373
Omnibus: 0.496 Durbin-Watson: 1.626
Prob(Omnibus): 0.780 Jarque-Bera (JB): 0.541
Skew: 0.054 Prob(JB): 0.763
Kurtosis: 2.076 Cond. No. 16.9