AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.766 | 0.392 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.704 |
Model: | OLS | Adj. R-squared: | 0.658 |
Method: | Least Squares | F-statistic: | 15.08 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.91e-05 |
Time: | 05:12:13 | Log-Likelihood: | -99.095 |
No. Observations: | 23 | AIC: | 206.2 |
Df Residuals: | 19 | BIC: | 210.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 52.7937 | 102.161 | 0.517 | 0.611 | -161.032 266.619 |
C(dose)[T.1] | 399.2129 | 209.616 | 1.904 | 0.072 | -39.519 837.944 |
expression | 0.1804 | 13.006 | 0.014 | 0.989 | -27.041 27.401 |
expression:C(dose)[T.1] | -43.6498 | 26.497 | -1.647 | 0.116 | -99.109 11.810 |
Omnibus: | 0.187 | Durbin-Watson: | 1.826 |
Prob(Omnibus): | 0.911 | Jarque-Bera (JB): | 0.280 |
Skew: | -0.183 | Prob(JB): | 0.869 |
Kurtosis: | 2.603 | Cond. No. | 478. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.628 |
Method: | Least Squares | F-statistic: | 19.59 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.95e-05 |
Time: | 05:12:13 | Log-Likelihood: | -100.63 |
No. Observations: | 23 | AIC: | 207.3 |
Df Residuals: | 20 | BIC: | 210.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 135.2669 | 92.790 | 1.458 | 0.160 | -58.289 328.823 |
C(dose)[T.1] | 54.1774 | 8.660 | 6.256 | 0.000 | 36.113 72.242 |
expression | -10.3353 | 11.807 | -0.875 | 0.392 | -34.964 14.293 |
Omnibus: | 0.280 | Durbin-Watson: | 1.989 |
Prob(Omnibus): | 0.869 | Jarque-Bera (JB): | 0.460 |
Skew: | 0.062 | Prob(JB): | 0.795 |
Kurtosis: | 2.318 | Cond. No. | 173. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:12:13 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.001 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.01190 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.914 |
Time: | 05:12:13 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 96.6488 | 155.369 | 0.622 | 0.541 | -226.459 419.756 |
expression | -2.1482 | 19.691 | -0.109 | 0.914 | -43.098 38.802 |
Omnibus: | 3.649 | Durbin-Watson: | 2.500 |
Prob(Omnibus): | 0.161 | Jarque-Bera (JB): | 1.616 |
Skew: | 0.277 | Prob(JB): | 0.446 |
Kurtosis: | 1.825 | Cond. No. | 173. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.551 | 0.054 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.606 |
Model: | OLS | Adj. R-squared: | 0.498 |
Method: | Least Squares | F-statistic: | 5.629 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0138 |
Time: | 05:12:13 | Log-Likelihood: | -68.323 |
No. Observations: | 15 | AIC: | 144.6 |
Df Residuals: | 11 | BIC: | 147.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 367.3136 | 181.550 | 2.023 | 0.068 | -32.275 766.902 |
C(dose)[T.1] | -55.0161 | 237.631 | -0.232 | 0.821 | -578.039 468.007 |
expression | -34.8343 | 21.056 | -1.654 | 0.126 | -81.177 11.509 |
expression:C(dose)[T.1] | 10.7584 | 28.247 | 0.381 | 0.711 | -51.412 72.929 |
Omnibus: | 2.279 | Durbin-Watson: | 1.337 |
Prob(Omnibus): | 0.320 | Jarque-Bera (JB): | 1.193 |
Skew: | -0.691 | Prob(JB): | 0.551 |
Kurtosis: | 2.971 | Cond. No. | 396. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.600 |
Model: | OLS | Adj. R-squared: | 0.534 |
Method: | Least Squares | F-statistic: | 9.013 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00407 |
Time: | 05:12:13 | Log-Likelihood: | -68.421 |
No. Observations: | 15 | AIC: | 142.8 |
Df Residuals: | 12 | BIC: | 145.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 315.8505 | 116.858 | 2.703 | 0.019 | 61.240 570.461 |
C(dose)[T.1] | 35.2995 | 14.901 | 2.369 | 0.035 | 2.832 67.767 |
expression | -28.8564 | 13.526 | -2.133 | 0.054 | -58.328 0.615 |
Omnibus: | 1.866 | Durbin-Watson: | 1.217 |
Prob(Omnibus): | 0.393 | Jarque-Bera (JB): | 0.949 |
Skew: | -0.615 | Prob(JB): | 0.622 |
Kurtosis: | 2.936 | Cond. No. | 149. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:12:13 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.413 |
Model: | OLS | Adj. R-squared: | 0.368 |
Method: | Least Squares | F-statistic: | 9.164 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00972 |
Time: | 05:12:13 | Log-Likelihood: | -71.299 |
No. Observations: | 15 | AIC: | 146.6 |
Df Residuals: | 13 | BIC: | 148.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 451.6674 | 118.519 | 3.811 | 0.002 | 195.623 707.712 |
expression | -42.8638 | 14.160 | -3.027 | 0.010 | -73.454 -12.273 |
Omnibus: | 1.586 | Durbin-Watson: | 2.178 |
Prob(Omnibus): | 0.453 | Jarque-Bera (JB): | 1.239 |
Skew: | 0.634 | Prob(JB): | 0.538 |
Kurtosis: | 2.391 | Cond. No. | 129. |