AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.459 0.506 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.606
Method: Least Squares F-statistic: 12.26
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.000108
Time: 22:45:42 Log-Likelihood: -100.72
No. Observations: 23 AIC: 209.4
Df Residuals: 19 BIC: 214.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 39.7030 104.455 0.380 0.708 -178.923 258.329
C(dose)[T.1] 6.7126 133.037 0.050 0.960 -271.736 285.162
expression 2.4748 17.791 0.139 0.891 -34.762 39.712
expression:C(dose)[T.1] 8.4247 23.044 0.366 0.719 -39.806 56.656
Omnibus: 1.265 Durbin-Watson: 1.770
Prob(Omnibus): 0.531 Jarque-Bera (JB): 0.896
Skew: 0.127 Prob(JB): 0.639
Kurtosis: 2.067 Cond. No. 241.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 19.15
Date: Mon, 27 Jan 2025 Prob (F-statistic): 2.26e-05
Time: 22:45:42 Log-Likelihood: -100.80
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 10.2707 65.098 0.158 0.876 -125.522 146.064
C(dose)[T.1] 55.2310 9.110 6.063 0.000 36.228 74.234
expression 7.4965 11.060 0.678 0.506 -15.573 30.566
Omnibus: 1.172 Durbin-Watson: 1.756
Prob(Omnibus): 0.557 Jarque-Bera (JB): 0.896
Skew: 0.177 Prob(JB): 0.639
Kurtosis: 2.101 Cond. No. 89.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 22:45:42 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.026
Model: OLS Adj. R-squared: -0.020
Method: Least Squares F-statistic: 0.5703
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.459
Time: 22:45:42 Log-Likelihood: -112.80
No. Observations: 23 AIC: 229.6
Df Residuals: 21 BIC: 231.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 154.7381 99.594 1.554 0.135 -52.379 361.855
expression -13.0691 17.306 -0.755 0.459 -49.058 22.920
Omnibus: 1.942 Durbin-Watson: 2.529
Prob(Omnibus): 0.379 Jarque-Bera (JB): 1.215
Skew: 0.263 Prob(JB): 0.545
Kurtosis: 2.005 Cond. No. 82.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.218 0.291 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.524
Model: OLS Adj. R-squared: 0.394
Method: Least Squares F-statistic: 4.033
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0368
Time: 22:45:42 Log-Likelihood: -69.736
No. Observations: 15 AIC: 147.5
Df Residuals: 11 BIC: 150.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 32.6487 196.347 0.166 0.871 -399.509 464.807
C(dose)[T.1] -142.1230 262.108 -0.542 0.598 -719.019 434.773
expression 4.3710 24.636 0.177 0.862 -49.853 58.595
expression:C(dose)[T.1] 24.9619 33.355 0.748 0.470 -48.451 98.375
Omnibus: 2.227 Durbin-Watson: 0.774
Prob(Omnibus): 0.328 Jarque-Bera (JB): 1.599
Skew: -0.763 Prob(JB): 0.450
Kurtosis: 2.523 Cond. No. 371.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.500
Model: OLS Adj. R-squared: 0.416
Method: Least Squares F-statistic: 5.989
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0157
Time: 22:45:42 Log-Likelihood: -70.108
No. Observations: 15 AIC: 146.2
Df Residuals: 12 BIC: 148.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -75.7091 130.167 -0.582 0.572 -359.318 207.900
C(dose)[T.1] 53.6754 15.537 3.455 0.005 19.824 87.527
expression 17.9888 16.301 1.104 0.291 -17.527 53.505
Omnibus: 3.316 Durbin-Watson: 0.888
Prob(Omnibus): 0.191 Jarque-Bera (JB): 2.342
Skew: -0.946 Prob(JB): 0.310
Kurtosis: 2.592 Cond. No. 139.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 22:45:42 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.075
Method: Least Squares F-statistic: 0.02356
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.880
Time: 22:45:42 Log-Likelihood: -75.286
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 68.0238 167.360 0.406 0.691 -293.535 429.583
expression 3.2774 21.350 0.154 0.880 -42.848 49.402
Omnibus: 0.436 Durbin-Watson: 1.664
Prob(Omnibus): 0.804 Jarque-Bera (JB): 0.514
Skew: 0.026 Prob(JB): 0.773
Kurtosis: 2.095 Cond. No. 131.