AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.200 0.154 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.706
Model: OLS Adj. R-squared: 0.659
Method: Least Squares F-statistic: 15.20
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.76e-05
Time: 04:37:22 Log-Likelihood: -99.030
No. Observations: 23 AIC: 206.1
Df Residuals: 19 BIC: 210.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 23.7442 142.186 0.167 0.869 -273.854 321.343
C(dose)[T.1] -204.1404 207.613 -0.983 0.338 -638.679 230.398
expression 4.2375 19.762 0.214 0.832 -37.125 45.600
expression:C(dose)[T.1] 33.3695 27.934 1.195 0.247 -25.098 91.837
Omnibus: 0.170 Durbin-Watson: 2.121
Prob(Omnibus): 0.919 Jarque-Bera (JB): 0.319
Skew: 0.168 Prob(JB): 0.853
Kurtosis: 2.531 Cond. No. 494.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.684
Model: OLS Adj. R-squared: 0.652
Method: Least Squares F-statistic: 21.63
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.98e-06
Time: 04:37:22 Log-Likelihood: -99.862
No. Observations: 23 AIC: 205.7
Df Residuals: 20 BIC: 209.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -96.3196 101.641 -0.948 0.355 -308.339 115.700
C(dose)[T.1] 43.5493 10.622 4.100 0.001 21.392 65.706
expression 20.9383 14.115 1.483 0.154 -8.506 50.383
Omnibus: 0.428 Durbin-Watson: 2.166
Prob(Omnibus): 0.807 Jarque-Bera (JB): 0.181
Skew: 0.210 Prob(JB): 0.914
Kurtosis: 2.889 Cond. No. 186.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:37:22 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.418
Model: OLS Adj. R-squared: 0.390
Method: Least Squares F-statistic: 15.09
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000856
Time: 04:37:22 Log-Likelihood: -106.88
No. Observations: 23 AIC: 217.8
Df Residuals: 21 BIC: 220.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -341.9822 108.698 -3.146 0.005 -568.031 -115.933
expression 56.8889 14.645 3.885 0.001 26.433 87.345
Omnibus: 0.316 Durbin-Watson: 2.569
Prob(Omnibus): 0.854 Jarque-Bera (JB): 0.484
Skew: 0.167 Prob(JB): 0.785
Kurtosis: 2.373 Cond. No. 149.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.427 0.089 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.571
Model: OLS Adj. R-squared: 0.454
Method: Least Squares F-statistic: 4.885
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0214
Time: 04:37:22 Log-Likelihood: -68.949
No. Observations: 15 AIC: 145.9
Df Residuals: 11 BIC: 148.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -159.8133 155.248 -1.029 0.325 -501.511 181.885
C(dose)[T.1] 49.3534 276.291 0.179 0.861 -558.760 657.467
expression 32.6341 22.243 1.467 0.170 -16.323 81.591
expression:C(dose)[T.1] 0.4506 40.018 0.011 0.991 -87.628 88.530
Omnibus: 3.806 Durbin-Watson: 0.960
Prob(Omnibus): 0.149 Jarque-Bera (JB): 1.743
Skew: -0.798 Prob(JB): 0.418
Kurtosis: 3.491 Cond. No. 331.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.571
Model: OLS Adj. R-squared: 0.500
Method: Least Squares F-statistic: 7.993
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00621
Time: 04:37:22 Log-Likelihood: -68.949
No. Observations: 15 AIC: 143.9
Df Residuals: 12 BIC: 146.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -160.7826 123.692 -1.300 0.218 -430.284 108.719
C(dose)[T.1] 52.4598 13.993 3.749 0.003 21.971 82.948
expression 32.7733 17.704 1.851 0.089 -5.799 71.346
Omnibus: 3.807 Durbin-Watson: 0.963
Prob(Omnibus): 0.149 Jarque-Bera (JB): 1.749
Skew: -0.800 Prob(JB): 0.417
Kurtosis: 3.485 Cond. No. 127.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:37:22 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.069
Model: OLS Adj. R-squared: -0.003
Method: Least Squares F-statistic: 0.9641
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.344
Time: 04:37:22 Log-Likelihood: -74.764
No. Observations: 15 AIC: 153.5
Df Residuals: 13 BIC: 154.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -75.0283 172.090 -0.436 0.670 -446.806 296.749
expression 24.4124 24.863 0.982 0.344 -29.301 78.126
Omnibus: 3.292 Durbin-Watson: 1.633
Prob(Omnibus): 0.193 Jarque-Bera (JB): 1.324
Skew: 0.290 Prob(JB): 0.516
Kurtosis: 1.665 Cond. No. 124.