AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.719 0.042 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.717
Model: OLS Adj. R-squared: 0.673
Method: Least Squares F-statistic: 16.08
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.90e-05
Time: 03:42:18 Log-Likelihood: -98.570
No. Observations: 23 AIC: 205.1
Df Residuals: 19 BIC: 209.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 234.2032 121.047 1.935 0.068 -19.151 487.557
C(dose)[T.1] 102.3240 191.531 0.534 0.599 -298.556 503.204
expression -20.1480 13.535 -1.489 0.153 -48.477 8.181
expression:C(dose)[T.1] -6.7640 22.069 -0.306 0.763 -52.956 39.428
Omnibus: 1.513 Durbin-Watson: 1.939
Prob(Omnibus): 0.469 Jarque-Bera (JB): 1.335
Skew: 0.468 Prob(JB): 0.513
Kurtosis: 2.282 Cond. No. 516.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.716
Model: OLS Adj. R-squared: 0.688
Method: Least Squares F-statistic: 25.22
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.41e-06
Time: 03:42:18 Log-Likelihood: -98.626
No. Observations: 23 AIC: 203.3
Df Residuals: 20 BIC: 206.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 256.9320 93.478 2.749 0.012 61.940 451.924
C(dose)[T.1] 43.6906 9.052 4.826 0.000 24.808 62.573
expression -22.6922 10.446 -2.172 0.042 -44.482 -0.903
Omnibus: 1.392 Durbin-Watson: 1.946
Prob(Omnibus): 0.499 Jarque-Bera (JB): 1.199
Skew: 0.398 Prob(JB): 0.549
Kurtosis: 2.214 Cond. No. 211.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:42:18 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.385
Model: OLS Adj. R-squared: 0.356
Method: Least Squares F-statistic: 13.17
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00157
Time: 03:42:18 Log-Likelihood: -107.51
No. Observations: 23 AIC: 219.0
Df Residuals: 21 BIC: 221.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 493.7364 114.245 4.322 0.000 256.151 731.322
expression -47.4231 13.070 -3.628 0.002 -74.604 -20.243
Omnibus: 0.611 Durbin-Watson: 2.064
Prob(Omnibus): 0.737 Jarque-Bera (JB): 0.302
Skew: 0.276 Prob(JB): 0.860
Kurtosis: 2.896 Cond. No. 179.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.466 0.249 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.636
Model: OLS Adj. R-squared: 0.536
Method: Least Squares F-statistic: 6.394
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00910
Time: 03:42:18 Log-Likelihood: -67.730
No. Observations: 15 AIC: 143.5
Df Residuals: 11 BIC: 146.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 148.8741 110.758 1.344 0.206 -94.904 392.652
C(dose)[T.1] 849.6193 406.289 2.091 0.061 -44.616 1743.854
expression -8.9108 12.071 -0.738 0.476 -35.478 17.657
expression:C(dose)[T.1] -83.5211 42.702 -1.956 0.076 -177.508 10.466
Omnibus: 0.160 Durbin-Watson: 1.085
Prob(Omnibus): 0.923 Jarque-Bera (JB): 0.354
Skew: 0.151 Prob(JB): 0.838
Kurtosis: 2.310 Cond. No. 679.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.509
Model: OLS Adj. R-squared: 0.427
Method: Least Squares F-statistic: 6.215
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0140
Time: 03:42:18 Log-Likelihood: -69.968
No. Observations: 15 AIC: 145.9
Df Residuals: 12 BIC: 148.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 209.8721 118.128 1.777 0.101 -47.508 467.252
C(dose)[T.1] 55.4409 15.727 3.525 0.004 21.174 89.708
expression -15.5846 12.870 -1.211 0.249 -43.625 12.456
Omnibus: 1.032 Durbin-Watson: 1.070
Prob(Omnibus): 0.597 Jarque-Bera (JB): 0.872
Skew: -0.505 Prob(JB): 0.647
Kurtosis: 2.388 Cond. No. 151.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:42:18 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.077
Method: Least Squares F-statistic: 0.001813
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.967
Time: 03:42:18 Log-Likelihood: -75.299
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 100.3045 156.219 0.642 0.532 -237.186 437.795
expression -0.7096 16.666 -0.043 0.967 -36.714 35.295
Omnibus: 0.647 Durbin-Watson: 1.632
Prob(Omnibus): 0.724 Jarque-Bera (JB): 0.598
Skew: 0.056 Prob(JB): 0.742
Kurtosis: 2.028 Cond. No. 146.