AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.545 | 0.228 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.693 |
Model: | OLS | Adj. R-squared: | 0.645 |
Method: | Least Squares | F-statistic: | 14.33 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.06e-05 |
Time: | 05:24:42 | Log-Likelihood: | -99.507 |
No. Observations: | 23 | AIC: | 207.0 |
Df Residuals: | 19 | BIC: | 211.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -141.6971 | 122.799 | -1.154 | 0.263 | -398.719 115.325 |
C(dose)[T.1] | 365.1220 | 285.416 | 1.279 | 0.216 | -232.260 962.504 |
expression | 20.6618 | 12.937 | 1.597 | 0.127 | -6.415 47.739 |
expression:C(dose)[T.1] | -32.8954 | 30.113 | -1.092 | 0.288 | -95.923 30.133 |
Omnibus: | 0.382 | Durbin-Watson: | 1.924 |
Prob(Omnibus): | 0.826 | Jarque-Bera (JB): | 0.517 |
Skew: | 0.026 | Prob(JB): | 0.772 |
Kurtosis: | 2.268 | Cond. No. | 753. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.674 |
Model: | OLS | Adj. R-squared: | 0.642 |
Method: | Least Squares | F-statistic: | 20.70 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.35e-05 |
Time: | 05:24:42 | Log-Likelihood: | -100.21 |
No. Observations: | 23 | AIC: | 206.4 |
Df Residuals: | 20 | BIC: | 209.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -84.1325 | 111.453 | -0.755 | 0.459 | -316.618 148.354 |
C(dose)[T.1] | 53.4728 | 8.450 | 6.328 | 0.000 | 35.846 71.100 |
expression | 14.5906 | 11.739 | 1.243 | 0.228 | -9.896 39.077 |
Omnibus: | 0.446 | Durbin-Watson: | 1.952 |
Prob(Omnibus): | 0.800 | Jarque-Bera (JB): | 0.556 |
Skew: | -0.261 | Prob(JB): | 0.757 |
Kurtosis: | 2.446 | Cond. No. | 254. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:24:42 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.022 |
Model: | OLS | Adj. R-squared: | -0.025 |
Method: | Least Squares | F-statistic: | 0.4717 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.500 |
Time: | 05:24:43 | Log-Likelihood: | -112.85 |
No. Observations: | 23 | AIC: | 229.7 |
Df Residuals: | 21 | BIC: | 232.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -49.4622 | 188.229 | -0.263 | 0.795 | -440.905 341.981 |
expression | 13.6307 | 19.847 | 0.687 | 0.500 | -27.644 54.905 |
Omnibus: | 3.900 | Durbin-Watson: | 2.372 |
Prob(Omnibus): | 0.142 | Jarque-Bera (JB): | 1.808 |
Skew: | 0.357 | Prob(JB): | 0.405 |
Kurtosis: | 1.827 | Cond. No. | 253. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
9.308 | 0.010 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.692 |
Model: | OLS | Adj. R-squared: | 0.609 |
Method: | Least Squares | F-statistic: | 8.256 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00370 |
Time: | 05:24:43 | Log-Likelihood: | -66.456 |
No. Observations: | 15 | AIC: | 140.9 |
Df Residuals: | 11 | BIC: | 143.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -307.9434 | 177.303 | -1.737 | 0.110 | -698.184 82.297 |
C(dose)[T.1] | -41.9856 | 288.180 | -0.146 | 0.887 | -676.265 592.294 |
expression | 39.2801 | 18.530 | 2.120 | 0.058 | -1.504 80.064 |
expression:C(dose)[T.1] | 9.7352 | 30.203 | 0.322 | 0.753 | -56.741 76.212 |
Omnibus: | 0.270 | Durbin-Watson: | 1.823 |
Prob(Omnibus): | 0.874 | Jarque-Bera (JB): | 0.019 |
Skew: | 0.040 | Prob(JB): | 0.991 |
Kurtosis: | 2.846 | Cond. No. | 572. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.690 |
Model: | OLS | Adj. R-squared: | 0.638 |
Method: | Least Squares | F-statistic: | 13.33 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000895 |
Time: | 05:24:43 | Log-Likelihood: | -66.527 |
No. Observations: | 15 | AIC: | 139.1 |
Df Residuals: | 12 | BIC: | 141.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -342.9601 | 134.789 | -2.544 | 0.026 | -636.639 -49.281 |
C(dose)[T.1] | 50.8179 | 11.824 | 4.298 | 0.001 | 25.056 76.579 |
expression | 42.9444 | 14.076 | 3.051 | 0.010 | 12.276 73.613 |
Omnibus: | 0.055 | Durbin-Watson: | 1.842 |
Prob(Omnibus): | 0.973 | Jarque-Bera (JB): | 0.085 |
Skew: | -0.001 | Prob(JB): | 0.959 |
Kurtosis: | 2.632 | Cond. No. | 221. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:24:43 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.212 |
Model: | OLS | Adj. R-squared: | 0.151 |
Method: | Least Squares | F-statistic: | 3.491 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0844 |
Time: | 05:24:43 | Log-Likelihood: | -73.516 |
No. Observations: | 15 | AIC: | 151.0 |
Df Residuals: | 13 | BIC: | 152.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -289.9255 | 205.499 | -1.411 | 0.182 | -733.879 154.028 |
expression | 40.2251 | 21.529 | 1.868 | 0.084 | -6.285 86.735 |
Omnibus: | 2.398 | Durbin-Watson: | 2.125 |
Prob(Omnibus): | 0.301 | Jarque-Bera (JB): | 1.679 |
Skew: | 0.645 | Prob(JB): | 0.432 |
Kurtosis: | 1.988 | Cond. No. | 220. |