AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.023 0.881 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.677
Model: OLS Adj. R-squared: 0.626
Method: Least Squares F-statistic: 13.27
Date: Thu, 03 Apr 2025 Prob (F-statistic): 6.64e-05
Time: 22:56:44 Log-Likelihood: -100.11
No. Observations: 23 AIC: 208.2
Df Residuals: 19 BIC: 212.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -100.7794 183.031 -0.551 0.588 -483.867 282.308
C(dose)[T.1] 462.1493 322.294 1.434 0.168 -212.419 1136.718
expression 18.6172 21.974 0.847 0.407 -27.375 64.609
expression:C(dose)[T.1] -49.0787 38.676 -1.269 0.220 -130.029 31.871
Omnibus: 0.079 Durbin-Watson: 1.660
Prob(Omnibus): 0.961 Jarque-Bera (JB): 0.203
Skew: 0.119 Prob(JB): 0.904
Kurtosis: 2.607 Cond. No. 761.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.53
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.80e-05
Time: 22:56:44 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 31.1102 152.939 0.203 0.841 -287.916 350.136
C(dose)[T.1] 53.3159 8.766 6.082 0.000 35.030 71.601
expression 2.7746 18.357 0.151 0.881 -35.517 41.066
Omnibus: 0.216 Durbin-Watson: 1.909
Prob(Omnibus): 0.897 Jarque-Bera (JB): 0.417
Skew: 0.070 Prob(JB): 0.812
Kurtosis: 2.355 Cond. No. 296.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:56:44 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.046
Method: Least Squares F-statistic: 0.02280
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.881
Time: 22:56:44 Log-Likelihood: -113.09
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 41.6921 251.936 0.165 0.870 -482.237 565.621
expression 4.5656 30.237 0.151 0.881 -58.316 67.447
Omnibus: 3.196 Durbin-Watson: 2.486
Prob(Omnibus): 0.202 Jarque-Bera (JB): 1.595
Skew: 0.318 Prob(JB): 0.450
Kurtosis: 1.877 Cond. No. 295.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.811 0.385 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.529
Model: OLS Adj. R-squared: 0.401
Method: Least Squares F-statistic: 4.125
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0346
Time: 22:56:44 Log-Likelihood: -69.647
No. Observations: 15 AIC: 147.3
Df Residuals: 11 BIC: 150.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 85.0543 241.351 0.352 0.731 -446.156 616.265
C(dose)[T.1] -320.9101 352.822 -0.910 0.383 -1097.465 455.645
expression -2.2286 30.484 -0.073 0.943 -69.324 64.867
expression:C(dose)[T.1] 45.1869 43.720 1.034 0.324 -51.041 141.415
Omnibus: 1.654 Durbin-Watson: 0.931
Prob(Omnibus): 0.437 Jarque-Bera (JB): 1.158
Skew: -0.443 Prob(JB): 0.560
Kurtosis: 1.967 Cond. No. 504.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.484
Model: OLS Adj. R-squared: 0.398
Method: Least Squares F-statistic: 5.621
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0189
Time: 22:56:44 Log-Likelihood: -70.342
No. Observations: 15 AIC: 146.7
Df Residuals: 12 BIC: 148.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -88.6907 173.670 -0.511 0.619 -467.084 289.703
C(dose)[T.1] 43.3463 16.560 2.618 0.022 7.266 79.427
expression 19.7399 21.914 0.901 0.385 -28.006 67.486
Omnibus: 2.300 Durbin-Watson: 0.714
Prob(Omnibus): 0.317 Jarque-Bera (JB): 1.770
Skew: -0.745 Prob(JB): 0.413
Kurtosis: 2.218 Cond. No. 188.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:56:44 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.189
Model: OLS Adj. R-squared: 0.126
Method: Least Squares F-statistic: 3.027
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.105
Time: 22:56:44 Log-Likelihood: -73.730
No. Observations: 15 AIC: 151.5
Df Residuals: 13 BIC: 152.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -247.0460 196.037 -1.260 0.230 -670.557 176.465
expression 42.2360 24.275 1.740 0.105 -10.207 94.679
Omnibus: 0.202 Durbin-Watson: 1.294
Prob(Omnibus): 0.904 Jarque-Bera (JB): 0.230
Skew: -0.211 Prob(JB): 0.891
Kurtosis: 2.563 Cond. No. 176.