AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.114 0.304 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 12.78
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.38e-05
Time: 04:45:01 Log-Likelihood: -100.40
No. Observations: 23 AIC: 208.8
Df Residuals: 19 BIC: 213.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -53.1040 192.259 -0.276 0.785 -455.506 349.298
C(dose)[T.1] 102.3307 202.971 0.504 0.620 -322.492 527.153
expression 12.6819 22.709 0.558 0.583 -34.849 60.213
expression:C(dose)[T.1] -5.9184 23.919 -0.247 0.807 -55.982 44.145
Omnibus: 0.449 Durbin-Watson: 2.163
Prob(Omnibus): 0.799 Jarque-Bera (JB): 0.578
Skew: 0.215 Prob(JB): 0.749
Kurtosis: 2.353 Cond. No. 624.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.634
Method: Least Squares F-statistic: 20.08
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.65e-05
Time: 04:45:01 Log-Likelihood: -100.44
No. Observations: 23 AIC: 206.9
Df Residuals: 20 BIC: 210.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -7.9606 59.200 -0.134 0.894 -131.449 115.528
C(dose)[T.1] 52.1560 8.608 6.059 0.000 34.199 70.113
expression 7.3469 6.961 1.055 0.304 -7.174 21.868
Omnibus: 0.423 Durbin-Watson: 2.155
Prob(Omnibus): 0.810 Jarque-Bera (JB): 0.560
Skew: 0.202 Prob(JB): 0.756
Kurtosis: 2.352 Cond. No. 121.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:45:02 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.057
Model: OLS Adj. R-squared: 0.013
Method: Least Squares F-statistic: 1.280
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.271
Time: 04:45:02 Log-Likelihood: -112.42
No. Observations: 23 AIC: 228.8
Df Residuals: 21 BIC: 231.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -29.8325 97.101 -0.307 0.762 -231.765 172.100
expression 12.8297 11.342 1.131 0.271 -10.758 36.417
Omnibus: 2.266 Durbin-Watson: 2.594
Prob(Omnibus): 0.322 Jarque-Bera (JB): 1.468
Skew: 0.373 Prob(JB): 0.480
Kurtosis: 2.012 Cond. No. 120.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.000 0.987 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.551
Model: OLS Adj. R-squared: 0.428
Method: Least Squares F-statistic: 4.495
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0272
Time: 04:45:02 Log-Likelihood: -69.299
No. Observations: 15 AIC: 146.6
Df Residuals: 11 BIC: 149.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 241.2834 216.880 1.113 0.290 -236.066 718.632
C(dose)[T.1] -611.5896 418.504 -1.461 0.172 -1532.711 309.532
expression -18.4736 23.017 -0.803 0.439 -69.133 32.186
expression:C(dose)[T.1] 72.9775 46.191 1.580 0.142 -28.687 174.642
Omnibus: 1.274 Durbin-Watson: 1.347
Prob(Omnibus): 0.529 Jarque-Bera (JB): 0.846
Skew: -0.554 Prob(JB): 0.655
Kurtosis: 2.642 Cond. No. 628.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.885
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0280
Time: 04:45:02 Log-Likelihood: -70.833
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 70.7541 199.496 0.355 0.729 -363.911 505.419
C(dose)[T.1] 49.0278 18.700 2.622 0.022 8.284 89.771
expression -0.3534 21.163 -0.017 0.987 -46.464 45.757
Omnibus: 2.752 Durbin-Watson: 0.816
Prob(Omnibus): 0.253 Jarque-Bera (JB): 1.884
Skew: -0.849 Prob(JB): 0.390
Kurtosis: 2.633 Cond. No. 236.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:45:02 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.133
Model: OLS Adj. R-squared: 0.066
Method: Least Squares F-statistic: 1.995
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.181
Time: 04:45:02 Log-Likelihood: -74.229
No. Observations: 15 AIC: 152.5
Df Residuals: 13 BIC: 153.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 371.2349 196.753 1.887 0.082 -53.825 796.295
expression -30.3137 21.463 -1.412 0.181 -76.681 16.054
Omnibus: 0.836 Durbin-Watson: 1.754
Prob(Omnibus): 0.658 Jarque-Bera (JB): 0.676
Skew: -0.123 Prob(JB): 0.713
Kurtosis: 1.990 Cond. No. 193.