AIM Score vs. Gene Expression 
		Full X range:
		
 
		 
			
		
		Auto X range:
		
 
		
		Group Comparisons: Boxplots
		 
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.039 | 0.845 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.652 | 
  | Model: | OLS | Adj. R-squared: | 0.597 | 
  | Method: | Least Squares | F-statistic: | 11.88 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.000131 | 
  | Time: | 18:59:38 | Log-Likelihood: | -100.96 | 
  | No. Observations: | 23 | AIC: | 209.9 | 
  | Df Residuals: | 19 | BIC: | 214.5 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 17.3517 | 110.488 | 0.157 | 0.877 | -213.903   248.606 | 
  | C(dose)[T.1] | 148.6280 | 261.017 | 0.569 | 0.576 | -397.686   694.942 | 
  | expression | 4.3429 | 12.999 | 0.334 | 0.742 | -22.864    31.549 | 
  | expression:C(dose)[T.1] | -11.0026 | 29.913 | -0.368 | 0.717 | -73.611    51.606 | 
  | Omnibus: | 0.652 | Durbin-Watson: | 1.779 | 
  | Prob(Omnibus): | 0.722 | Jarque-Bera (JB): | 0.654 | 
  | Skew: | 0.085 | Prob(JB): | 0.721 | 
  | Kurtosis: | 2.192 | Cond. No. | 593. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.650 | 
  | Model: | OLS | Adj. R-squared: | 0.615 | 
  | Method: | Least Squares | F-statistic: | 18.55 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 2.78e-05 | 
  | Time: | 18:59:38 | Log-Likelihood: | -101.04 | 
  | No. Observations: | 23 | AIC: | 208.1 | 
  | Df Residuals: | 20 | BIC: | 211.5 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 34.9839 | 97.372 | 0.359 | 0.723 | -168.130   238.098 | 
  | C(dose)[T.1] | 52.6854 | 9.360 | 5.629 | 0.000 | 33.160    72.211 | 
  | expression | 2.2653 | 11.451 | 0.198 | 0.845 | -21.622    26.152 | 
  | Omnibus: | 0.217 | Durbin-Watson: | 1.812 | 
  | Prob(Omnibus): | 0.897 | Jarque-Bera (JB): | 0.418 | 
  | Skew: | 0.041 | Prob(JB): | 0.811 | 
  | Kurtosis: | 2.345 | Cond. No. | 195. | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.649 | 
  | Model: | OLS | Adj. R-squared: | 0.632 | 
  | Method: | Least Squares | F-statistic: | 38.84 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 3.51e-06 | 
  | Time: | 18:59:38 | Log-Likelihood: | -101.06 | 
  | No. Observations: | 23 | AIC: | 206.1 | 
  | Df Residuals: | 21 | BIC: | 208.4 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900    66.517 | 
  | C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539    71.135 | 
  | Omnibus: | 0.322 | Durbin-Watson: | 1.888 | 
  | Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 | 
  | Skew: | 0.060 | Prob(JB): | 0.785 | 
  | Kurtosis: | 2.299 | Cond. No. | 2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.095 | 
  | Model: | OLS | Adj. R-squared: | 0.052 | 
  | Method: | Least Squares | F-statistic: | 2.202 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.153 | 
  | Time: | 18:59:38 | Log-Likelihood: | -111.96 | 
  | No. Observations: | 23 | AIC: | 227.9 | 
  | Df Residuals: | 21 | BIC: | 230.2 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -135.4782 | 145.177 | -0.933 | 0.361 | -437.390   166.434 | 
  | expression | 24.9525 | 16.815 | 1.484 | 0.153 | -10.016    59.921 | 
  | Omnibus: | 2.502 | Durbin-Watson: | 1.974 | 
  | Prob(Omnibus): | 0.286 | Jarque-Bera (JB): | 1.285 | 
  | Skew: | 0.202 | Prob(JB): | 0.526 | 
  | Kurtosis: | 1.915 | Cond. No. | 185. | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 3.902 | 0.072 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.605 | 
  | Model: | OLS | Adj. R-squared: | 0.498 | 
  | Method: | Least Squares | F-statistic: | 5.620 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0139 | 
  | Time: | 18:59:38 | Log-Likelihood: | -68.330 | 
  | No. Observations: | 15 | AIC: | 144.7 | 
  | Df Residuals: | 11 | BIC: | 147.5 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -86.8522 | 141.851 | -0.612 | 0.553 | -399.063   225.359 | 
  | C(dose)[T.1] | -135.3255 | 237.562 | -0.570 | 0.580 | -658.195   387.544 | 
  | expression | 19.4083 | 17.799 | 1.090 | 0.299 | -19.767    58.583 | 
  | expression:C(dose)[T.1] | 22.7331 | 29.618 | 0.768 | 0.459 | -42.455    87.922 | 
  | Omnibus: | 2.665 | Durbin-Watson: | 1.558 | 
  | Prob(Omnibus): | 0.264 | Jarque-Bera (JB): | 1.689 | 
  | Skew: | -0.813 | Prob(JB): | 0.430 | 
  | Kurtosis: | 2.764 | Cond. No. | 349. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.584 | 
  | Model: | OLS | Adj. R-squared: | 0.515 | 
  | Method: | Least Squares | F-statistic: | 8.425 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00518 | 
  | Time: | 18:59:38 | Log-Likelihood: | -68.721 | 
  | No. Observations: | 15 | AIC: | 143.4 | 
  | Df Residuals: | 12 | BIC: | 145.6 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -152.1133 | 111.583 | -1.363 | 0.198 | -395.232    91.005 | 
  | C(dose)[T.1] | 46.6981 | 13.731 | 3.401 | 0.005 | 16.781    76.616 | 
  | expression | 27.6181 | 13.981 | 1.975 | 0.072 | -2.843    58.079 | 
  | Omnibus: | 2.443 | Durbin-Watson: | 1.616 | 
  | Prob(Omnibus): | 0.295 | Jarque-Bera (JB): | 1.494 | 
  | Skew: | -0.766 | Prob(JB): | 0.474 | 
  | Kurtosis: | 2.798 | Cond. No. | 133. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.406 | 
  | Method: | Least Squares | F-statistic: | 10.58 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00629 | 
  | Time: | 18:59:38 | Log-Likelihood: | -70.833 | 
  | No. Observations: | 15 | AIC: | 145.7 | 
  | Df Residuals: | 13 | BIC: | 147.1 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570    91.287 | 
  | C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527    81.866 | 
  | Omnibus: | 2.713 | Durbin-Watson: | 0.810 | 
  | Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 | 
  | Skew: | -0.843 | Prob(JB): | 0.393 | 
  | Kurtosis: | 2.619 | Cond. No. | 2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.183 | 
  | Model: | OLS | Adj. R-squared: | 0.120 | 
  | Method: | Least Squares | F-statistic: | 2.914 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.112 | 
  | Time: | 18:59:38 | Log-Likelihood: | -73.783 | 
  | No. Observations: | 15 | AIC: | 151.6 | 
  | Df Residuals: | 13 | BIC: | 153.0 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -162.2309 | 150.182 | -1.080 | 0.300 | -486.679   162.217 | 
  | expression | 31.9974 | 18.744 | 1.707 | 0.112 | -8.496    72.490 | 
  | Omnibus: | 2.054 | Durbin-Watson: | 1.991 | 
  | Prob(Omnibus): | 0.358 | Jarque-Bera (JB): | 0.960 | 
  | Skew: | 0.055 | Prob(JB): | 0.619 | 
  | Kurtosis: | 1.766 | Cond. No. | 133. |