AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.039 | 0.845 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.597 |
Method: | Least Squares | F-statistic: | 11.88 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000131 |
Time: | 03:57:57 | Log-Likelihood: | -100.96 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 17.3517 | 110.488 | 0.157 | 0.877 | -213.903 248.606 |
C(dose)[T.1] | 148.6280 | 261.017 | 0.569 | 0.576 | -397.686 694.942 |
expression | 4.3429 | 12.999 | 0.334 | 0.742 | -22.864 31.549 |
expression:C(dose)[T.1] | -11.0026 | 29.913 | -0.368 | 0.717 | -73.611 51.606 |
Omnibus: | 0.652 | Durbin-Watson: | 1.779 |
Prob(Omnibus): | 0.722 | Jarque-Bera (JB): | 0.654 |
Skew: | 0.085 | Prob(JB): | 0.721 |
Kurtosis: | 2.192 | Cond. No. | 593. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.55 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.78e-05 |
Time: | 03:57:57 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 34.9839 | 97.372 | 0.359 | 0.723 | -168.130 238.098 |
C(dose)[T.1] | 52.6854 | 9.360 | 5.629 | 0.000 | 33.160 72.211 |
expression | 2.2653 | 11.451 | 0.198 | 0.845 | -21.622 26.152 |
Omnibus: | 0.217 | Durbin-Watson: | 1.812 |
Prob(Omnibus): | 0.897 | Jarque-Bera (JB): | 0.418 |
Skew: | 0.041 | Prob(JB): | 0.811 |
Kurtosis: | 2.345 | Cond. No. | 195. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:57:57 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.095 |
Model: | OLS | Adj. R-squared: | 0.052 |
Method: | Least Squares | F-statistic: | 2.202 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.153 |
Time: | 03:57:57 | Log-Likelihood: | -111.96 |
No. Observations: | 23 | AIC: | 227.9 |
Df Residuals: | 21 | BIC: | 230.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -135.4782 | 145.177 | -0.933 | 0.361 | -437.390 166.434 |
expression | 24.9525 | 16.815 | 1.484 | 0.153 | -10.016 59.921 |
Omnibus: | 2.502 | Durbin-Watson: | 1.974 |
Prob(Omnibus): | 0.286 | Jarque-Bera (JB): | 1.285 |
Skew: | 0.202 | Prob(JB): | 0.526 |
Kurtosis: | 1.915 | Cond. No. | 185. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.902 | 0.072 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.605 |
Model: | OLS | Adj. R-squared: | 0.498 |
Method: | Least Squares | F-statistic: | 5.620 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0139 |
Time: | 03:57:57 | Log-Likelihood: | -68.330 |
No. Observations: | 15 | AIC: | 144.7 |
Df Residuals: | 11 | BIC: | 147.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -86.8522 | 141.851 | -0.612 | 0.553 | -399.063 225.359 |
C(dose)[T.1] | -135.3255 | 237.562 | -0.570 | 0.580 | -658.195 387.544 |
expression | 19.4083 | 17.799 | 1.090 | 0.299 | -19.767 58.583 |
expression:C(dose)[T.1] | 22.7331 | 29.618 | 0.768 | 0.459 | -42.455 87.922 |
Omnibus: | 2.665 | Durbin-Watson: | 1.558 |
Prob(Omnibus): | 0.264 | Jarque-Bera (JB): | 1.689 |
Skew: | -0.813 | Prob(JB): | 0.430 |
Kurtosis: | 2.764 | Cond. No. | 349. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.584 |
Model: | OLS | Adj. R-squared: | 0.515 |
Method: | Least Squares | F-statistic: | 8.425 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00518 |
Time: | 03:57:57 | Log-Likelihood: | -68.721 |
No. Observations: | 15 | AIC: | 143.4 |
Df Residuals: | 12 | BIC: | 145.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -152.1133 | 111.583 | -1.363 | 0.198 | -395.232 91.005 |
C(dose)[T.1] | 46.6981 | 13.731 | 3.401 | 0.005 | 16.781 76.616 |
expression | 27.6181 | 13.981 | 1.975 | 0.072 | -2.843 58.079 |
Omnibus: | 2.443 | Durbin-Watson: | 1.616 |
Prob(Omnibus): | 0.295 | Jarque-Bera (JB): | 1.494 |
Skew: | -0.766 | Prob(JB): | 0.474 |
Kurtosis: | 2.798 | Cond. No. | 133. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:57:57 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.183 |
Model: | OLS | Adj. R-squared: | 0.120 |
Method: | Least Squares | F-statistic: | 2.914 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.112 |
Time: | 03:57:57 | Log-Likelihood: | -73.783 |
No. Observations: | 15 | AIC: | 151.6 |
Df Residuals: | 13 | BIC: | 153.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -162.2309 | 150.182 | -1.080 | 0.300 | -486.679 162.217 |
expression | 31.9974 | 18.744 | 1.707 | 0.112 | -8.496 72.490 |
Omnibus: | 2.054 | Durbin-Watson: | 1.991 |
Prob(Omnibus): | 0.358 | Jarque-Bera (JB): | 0.960 |
Skew: | 0.055 | Prob(JB): | 0.619 |
Kurtosis: | 1.766 | Cond. No. | 133. |