AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.127 | 0.726 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.598 |
Method: | Least Squares | F-statistic: | 11.89 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000130 |
Time: | 23:03:52 | Log-Likelihood: | -100.95 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -24.7941 | 182.925 | -0.136 | 0.894 | -407.660 358.072 |
C(dose)[T.1] | 131.5674 | 300.433 | 0.438 | 0.666 | -497.247 760.382 |
expression | 8.8271 | 20.427 | 0.432 | 0.671 | -33.927 51.581 |
expression:C(dose)[T.1] | -8.7390 | 34.012 | -0.257 | 0.800 | -79.926 62.448 |
Omnibus: | 0.454 | Durbin-Watson: | 1.860 |
Prob(Omnibus): | 0.797 | Jarque-Bera (JB): | 0.554 |
Skew: | 0.033 | Prob(JB): | 0.758 |
Kurtosis: | 2.242 | Cond. No. | 736. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.68 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.66e-05 |
Time: | 23:03:52 | Log-Likelihood: | -100.99 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 3.4180 | 142.850 | 0.024 | 0.981 | -294.561 301.397 |
C(dose)[T.1] | 54.4120 | 9.249 | 5.883 | 0.000 | 35.118 73.706 |
expression | 5.6749 | 15.947 | 0.356 | 0.726 | -27.589 38.939 |
Omnibus: | 0.190 | Durbin-Watson: | 1.865 |
Prob(Omnibus): | 0.909 | Jarque-Bera (JB): | 0.399 |
Skew: | -0.000 | Prob(JB): | 0.819 |
Kurtosis: | 2.355 | Cond. No. | 294. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 23:03:52 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.048 |
Model: | OLS | Adj. R-squared: | 0.002 |
Method: | Least Squares | F-statistic: | 1.055 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.316 |
Time: | 23:03:53 | Log-Likelihood: | -112.54 |
No. Observations: | 23 | AIC: | 229.1 |
Df Residuals: | 21 | BIC: | 231.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 300.8411 | 215.445 | 1.396 | 0.177 | -147.201 748.883 |
expression | -24.9593 | 24.305 | -1.027 | 0.316 | -75.505 25.586 |
Omnibus: | 2.113 | Durbin-Watson: | 2.577 |
Prob(Omnibus): | 0.348 | Jarque-Bera (JB): | 1.224 |
Skew: | 0.232 | Prob(JB): | 0.542 |
Kurtosis: | 1.970 | Cond. No. | 275. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.664 | 0.221 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.691 |
Model: | OLS | Adj. R-squared: | 0.607 |
Method: | Least Squares | F-statistic: | 8.206 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00379 |
Time: | 23:03:53 | Log-Likelihood: | -66.488 |
No. Observations: | 15 | AIC: | 141.0 |
Df Residuals: | 11 | BIC: | 143.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 374.4360 | 472.966 | 0.792 | 0.445 | -666.556 1415.428 |
C(dose)[T.1] | -1659.6632 | 680.509 | -2.439 | 0.033 | -3157.454 -161.873 |
expression | -33.3502 | 51.369 | -0.649 | 0.530 | -146.412 79.712 |
expression:C(dose)[T.1] | 183.0411 | 73.264 | 2.498 | 0.030 | 21.789 344.294 |
Omnibus: | 2.997 | Durbin-Watson: | 0.683 |
Prob(Omnibus): | 0.223 | Jarque-Bera (JB): | 1.695 |
Skew: | -0.823 | Prob(JB): | 0.428 |
Kurtosis: | 2.977 | Cond. No. | 1.38e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.516 |
Model: | OLS | Adj. R-squared: | 0.435 |
Method: | Least Squares | F-statistic: | 6.394 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0129 |
Time: | 23:03:53 | Log-Likelihood: | -69.859 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 12 | BIC: | 147.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -453.9296 | 404.302 | -1.123 | 0.284 | -1334.828 426.969 |
C(dose)[T.1] | 40.1688 | 16.326 | 2.460 | 0.030 | 4.597 75.740 |
expression | 56.6350 | 43.904 | 1.290 | 0.221 | -39.023 152.293 |
Omnibus: | 2.324 | Durbin-Watson: | 0.879 |
Prob(Omnibus): | 0.313 | Jarque-Bera (JB): | 1.741 |
Skew: | -0.703 | Prob(JB): | 0.419 |
Kurtosis: | 2.099 | Cond. No. | 517. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 23:03:53 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.272 |
Model: | OLS | Adj. R-squared: | 0.216 |
Method: | Least Squares | F-statistic: | 4.850 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0463 |
Time: | 23:03:53 | Log-Likelihood: | -72.922 |
No. Observations: | 15 | AIC: | 149.8 |
Df Residuals: | 13 | BIC: | 151.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -862.6935 | 434.364 | -1.986 | 0.069 | -1801.079 75.692 |
expression | 102.9386 | 46.744 | 2.202 | 0.046 | 1.955 203.922 |
Omnibus: | 2.558 | Durbin-Watson: | 1.768 |
Prob(Omnibus): | 0.278 | Jarque-Bera (JB): | 1.465 |
Skew: | -0.764 | Prob(JB): | 0.481 |
Kurtosis: | 2.901 | Cond. No. | 471. |