AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.128 0.301 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 12.79
Date: Thu, 03 Apr 2025 Prob (F-statistic): 8.35e-05
Time: 22:45:53 Log-Likelihood: -100.40
No. Observations: 23 AIC: 208.8
Df Residuals: 19 BIC: 213.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 162.8780 105.256 1.547 0.138 -57.426 383.182
C(dose)[T.1] -3.2889 233.354 -0.014 0.989 -491.704 485.126
expression -17.5275 16.949 -1.034 0.314 -53.002 17.947
expression:C(dose)[T.1] 9.0381 37.952 0.238 0.814 -70.396 88.473
Omnibus: 0.232 Durbin-Watson: 1.781
Prob(Omnibus): 0.890 Jarque-Bera (JB): 0.254
Skew: -0.198 Prob(JB): 0.881
Kurtosis: 2.672 Cond. No. 392.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 20.10
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.64e-05
Time: 22:45:53 Log-Likelihood: -100.43
No. Observations: 23 AIC: 206.9
Df Residuals: 20 BIC: 210.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 151.7022 91.967 1.650 0.115 -40.138 343.542
C(dose)[T.1] 52.2435 8.594 6.079 0.000 34.316 70.171
expression -15.7249 14.803 -1.062 0.301 -46.603 15.153
Omnibus: 0.755 Durbin-Watson: 1.750
Prob(Omnibus): 0.686 Jarque-Bera (JB): 0.359
Skew: -0.305 Prob(JB): 0.836
Kurtosis: 2.940 Cond. No. 137.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:45:54 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.054
Model: OLS Adj. R-squared: 0.009
Method: Least Squares F-statistic: 1.199
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.286
Time: 22:45:54 Log-Likelihood: -112.47
No. Observations: 23 AIC: 228.9
Df Residuals: 21 BIC: 231.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 243.1598 149.413 1.627 0.119 -67.561 553.881
expression -26.5041 24.202 -1.095 0.286 -76.835 23.827
Omnibus: 3.403 Durbin-Watson: 2.208
Prob(Omnibus): 0.182 Jarque-Bera (JB): 1.467
Skew: 0.199 Prob(JB): 0.480
Kurtosis: 1.829 Cond. No. 135.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.535 0.479 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.478
Model: OLS Adj. R-squared: 0.336
Method: Least Squares F-statistic: 3.359
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0589
Time: 22:45:54 Log-Likelihood: -70.423
No. Observations: 15 AIC: 148.8
Df Residuals: 11 BIC: 151.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 27.3852 515.444 0.053 0.959 -1107.099 1161.869
C(dose)[T.1] -170.2074 613.065 -0.278 0.786 -1519.554 1179.140
expression 6.3912 82.248 0.078 0.939 -174.635 187.417
expression:C(dose)[T.1] 33.8849 97.040 0.349 0.734 -179.698 247.468
Omnibus: 2.454 Durbin-Watson: 0.728
Prob(Omnibus): 0.293 Jarque-Bera (JB): 1.857
Skew: -0.748 Prob(JB): 0.395
Kurtosis: 2.143 Cond. No. 735.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.472
Model: OLS Adj. R-squared: 0.384
Method: Least Squares F-statistic: 5.370
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0216
Time: 22:45:54 Log-Likelihood: -70.506
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -125.1255 263.514 -0.475 0.643 -699.273 449.022
C(dose)[T.1] 43.7764 17.090 2.561 0.025 6.540 81.013
expression 30.7331 42.021 0.731 0.479 -60.822 122.288
Omnibus: 2.453 Durbin-Watson: 0.736
Prob(Omnibus): 0.293 Jarque-Bera (JB): 1.874
Skew: -0.767 Prob(JB): 0.392
Kurtosis: 2.195 Cond. No. 225.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:45:54 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.184
Model: OLS Adj. R-squared: 0.121
Method: Least Squares F-statistic: 2.927
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.111
Time: 22:45:55 Log-Likelihood: -73.777
No. Observations: 15 AIC: 151.6
Df Residuals: 13 BIC: 153.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -398.5835 287.873 -1.385 0.189 -1020.496 223.329
expression 77.4050 45.244 1.711 0.111 -20.339 175.149
Omnibus: 0.328 Durbin-Watson: 1.424
Prob(Omnibus): 0.849 Jarque-Bera (JB): 0.465
Skew: 0.031 Prob(JB): 0.792
Kurtosis: 2.140 Cond. No. 204.