AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.296 0.268 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.685
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 13.76
Date: Thu, 03 Apr 2025 Prob (F-statistic): 5.25e-05
Time: 22:52:14 Log-Likelihood: -99.825
No. Observations: 23 AIC: 207.6
Df Residuals: 19 BIC: 212.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 91.2356 119.488 0.764 0.455 -158.855 341.326
C(dose)[T.1] 230.7826 191.329 1.206 0.243 -169.674 631.239
expression -4.9182 15.852 -0.310 0.760 -38.096 28.260
expression:C(dose)[T.1] -23.8600 25.547 -0.934 0.362 -77.330 29.610
Omnibus: 0.189 Durbin-Watson: 1.836
Prob(Omnibus): 0.910 Jarque-Bera (JB): 0.018
Skew: 0.038 Prob(JB): 0.991
Kurtosis: 2.886 Cond. No. 423.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.670
Model: OLS Adj. R-squared: 0.637
Method: Least Squares F-statistic: 20.34
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.51e-05
Time: 22:52:15 Log-Likelihood: -100.34
No. Observations: 23 AIC: 206.7
Df Residuals: 20 BIC: 210.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 160.3988 93.474 1.716 0.102 -34.585 355.383
C(dose)[T.1] 52.2652 8.551 6.112 0.000 34.428 70.102
expression -14.1049 12.391 -1.138 0.268 -39.953 11.743
Omnibus: 0.159 Durbin-Watson: 2.029
Prob(Omnibus): 0.923 Jarque-Bera (JB): 0.157
Skew: 0.148 Prob(JB): 0.925
Kurtosis: 2.723 Cond. No. 168.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:52:15 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.055
Model: OLS Adj. R-squared: 0.010
Method: Least Squares F-statistic: 1.216
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.283
Time: 22:52:15 Log-Likelihood: -112.46
No. Observations: 23 AIC: 228.9
Df Residuals: 21 BIC: 231.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 247.8853 152.663 1.624 0.119 -69.595 565.365
expression -22.4455 20.355 -1.103 0.283 -64.775 19.884
Omnibus: 4.513 Durbin-Watson: 2.624
Prob(Omnibus): 0.105 Jarque-Bera (JB): 1.640
Skew: 0.187 Prob(JB): 0.440
Kurtosis: 1.746 Cond. No. 166.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.179 0.679 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.511
Model: OLS Adj. R-squared: 0.377
Method: Least Squares F-statistic: 3.829
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0423
Time: 22:52:15 Log-Likelihood: -69.937
No. Observations: 15 AIC: 147.9
Df Residuals: 11 BIC: 150.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 319.2986 241.862 1.320 0.214 -213.036 851.633
C(dose)[T.1] -369.2620 385.167 -0.959 0.358 -1217.008 478.484
expression -32.7837 31.447 -1.043 0.320 -101.997 36.430
expression:C(dose)[T.1] 53.0997 48.204 1.102 0.294 -52.997 159.196
Omnibus: 1.717 Durbin-Watson: 0.751
Prob(Omnibus): 0.424 Jarque-Bera (JB): 1.325
Skew: -0.570 Prob(JB): 0.516
Kurtosis: 2.093 Cond. No. 520.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.457
Model: OLS Adj. R-squared: 0.366
Method: Least Squares F-statistic: 5.048
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0257
Time: 22:52:15 Log-Likelihood: -70.722
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 145.6822 185.081 0.787 0.446 -257.575 548.940
C(dose)[T.1] 54.4628 19.966 2.728 0.018 10.960 97.965
expression -10.1856 24.045 -0.424 0.679 -62.574 42.203
Omnibus: 3.306 Durbin-Watson: 0.811
Prob(Omnibus): 0.191 Jarque-Bera (JB): 1.903
Skew: -0.872 Prob(JB): 0.386
Kurtosis: 2.993 Cond. No. 193.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:52:15 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.120
Model: OLS Adj. R-squared: 0.052
Method: Least Squares F-statistic: 1.775
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.206
Time: 22:52:15 Log-Likelihood: -74.340
No. Observations: 15 AIC: 152.7
Df Residuals: 13 BIC: 154.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -150.2915 183.359 -0.820 0.427 -546.414 245.831
expression 30.6536 23.008 1.332 0.206 -19.052 80.360
Omnibus: 0.609 Durbin-Watson: 1.211
Prob(Omnibus): 0.738 Jarque-Bera (JB): 0.482
Skew: -0.382 Prob(JB): 0.786
Kurtosis: 2.565 Cond. No. 156.