AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.644 | 0.214 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.743 |
Model: | OLS | Adj. R-squared: | 0.702 |
Method: | Least Squares | F-statistic: | 18.31 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.84e-06 |
Time: | 04:37:09 | Log-Likelihood: | -97.479 |
No. Observations: | 23 | AIC: | 203.0 |
Df Residuals: | 19 | BIC: | 207.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 273.5719 | 91.415 | 2.993 | 0.007 | 82.238 464.906 |
C(dose)[T.1] | -314.9916 | 165.373 | -1.905 | 0.072 | -661.120 31.137 |
expression | -28.3825 | 11.808 | -2.404 | 0.027 | -53.096 -3.669 |
expression:C(dose)[T.1] | 47.6214 | 21.347 | 2.231 | 0.038 | 2.942 92.300 |
Omnibus: | 1.500 | Durbin-Watson: | 2.178 |
Prob(Omnibus): | 0.472 | Jarque-Bera (JB): | 0.613 |
Skew: | -0.384 | Prob(JB): | 0.736 |
Kurtosis: | 3.227 | Cond. No. | 405. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.676 |
Model: | OLS | Adj. R-squared: | 0.643 |
Method: | Least Squares | F-statistic: | 20.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.29e-05 |
Time: | 04:37:09 | Log-Likelihood: | -100.15 |
No. Observations: | 23 | AIC: | 206.3 |
Df Residuals: | 20 | BIC: | 209.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 160.9582 | 83.447 | 1.929 | 0.068 | -13.110 335.027 |
C(dose)[T.1] | 53.5318 | 8.431 | 6.349 | 0.000 | 35.944 71.120 |
expression | -13.8119 | 10.771 | -1.282 | 0.214 | -36.279 8.655 |
Omnibus: | 0.532 | Durbin-Watson: | 2.021 |
Prob(Omnibus): | 0.766 | Jarque-Bera (JB): | 0.593 |
Skew: | 0.040 | Prob(JB): | 0.744 |
Kurtosis: | 2.218 | Cond. No. | 156. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:37:09 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.022 |
Model: | OLS | Adj. R-squared: | -0.024 |
Method: | Least Squares | F-statistic: | 0.4752 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.498 |
Time: | 04:37:09 | Log-Likelihood: | -112.85 |
No. Observations: | 23 | AIC: | 229.7 |
Df Residuals: | 21 | BIC: | 232.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 177.0378 | 141.351 | 1.252 | 0.224 | -116.918 470.993 |
expression | -12.5809 | 18.250 | -0.689 | 0.498 | -50.533 25.371 |
Omnibus: | 3.388 | Durbin-Watson: | 2.431 |
Prob(Omnibus): | 0.184 | Jarque-Bera (JB): | 2.028 |
Skew: | 0.497 | Prob(JB): | 0.363 |
Kurtosis: | 1.937 | Cond. No. | 156. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.004 | 0.951 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.467 |
Model: | OLS | Adj. R-squared: | 0.322 |
Method: | Least Squares | F-statistic: | 3.214 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0655 |
Time: | 04:37:09 | Log-Likelihood: | -70.579 |
No. Observations: | 15 | AIC: | 149.2 |
Df Residuals: | 11 | BIC: | 152.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -21.9933 | 233.129 | -0.094 | 0.927 | -535.107 491.120 |
C(dose)[T.1] | 250.8275 | 329.856 | 0.760 | 0.463 | -475.181 976.836 |
expression | 10.8671 | 28.295 | 0.384 | 0.708 | -51.410 73.144 |
expression:C(dose)[T.1] | -24.8599 | 40.565 | -0.613 | 0.552 | -114.143 64.424 |
Omnibus: | 2.849 | Durbin-Watson: | 0.643 |
Prob(Omnibus): | 0.241 | Jarque-Bera (JB): | 1.831 |
Skew: | -0.847 | Prob(JB): | 0.400 |
Kurtosis: | 2.756 | Cond. No. | 446. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.888 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 04:37:09 | Log-Likelihood: | -70.831 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 77.5334 | 162.845 | 0.476 | 0.643 | -277.276 432.343 |
C(dose)[T.1] | 48.9391 | 16.272 | 3.008 | 0.011 | 13.486 84.392 |
expression | -1.2280 | 19.741 | -0.062 | 0.951 | -44.239 41.783 |
Omnibus: | 2.772 | Durbin-Watson: | 0.822 |
Prob(Omnibus): | 0.250 | Jarque-Bera (JB): | 1.891 |
Skew: | -0.851 | Prob(JB): | 0.389 |
Kurtosis: | 2.641 | Cond. No. | 172. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:37:09 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.034 |
Model: | OLS | Adj. R-squared: | -0.041 |
Method: | Least Squares | F-statistic: | 0.4515 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.513 |
Time: | 04:37:09 | Log-Likelihood: | -75.044 |
No. Observations: | 15 | AIC: | 154.1 |
Df Residuals: | 13 | BIC: | 155.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 226.1530 | 197.429 | 1.145 | 0.273 | -200.366 652.672 |
expression | -16.3223 | 24.292 | -0.672 | 0.513 | -68.802 36.157 |
Omnibus: | 0.177 | Durbin-Watson: | 1.605 |
Prob(Omnibus): | 0.915 | Jarque-Bera (JB): | 0.373 |
Skew: | -0.139 | Prob(JB): | 0.830 |
Kurtosis: | 2.279 | Cond. No. | 163. |