AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.199 0.287 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.670
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 12.87
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.02e-05
Time: 04:33:01 Log-Likelihood: -100.35
No. Observations: 23 AIC: 208.7
Df Residuals: 19 BIC: 213.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -30.5262 140.059 -0.218 0.830 -323.674 262.621
C(dose)[T.1] 4.9887 201.182 0.025 0.980 -416.090 426.067
expression 9.0258 14.905 0.606 0.552 -22.171 40.222
expression:C(dose)[T.1] 6.0201 22.096 0.272 0.788 -40.228 52.268
Omnibus: 1.442 Durbin-Watson: 2.055
Prob(Omnibus): 0.486 Jarque-Bera (JB): 0.965
Skew: 0.150 Prob(JB): 0.617
Kurtosis: 2.042 Cond. No. 543.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.636
Method: Least Squares F-statistic: 20.20
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.58e-05
Time: 04:33:01 Log-Likelihood: -100.39
No. Observations: 23 AIC: 206.8
Df Residuals: 20 BIC: 210.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -56.2423 101.053 -0.557 0.584 -267.035 154.551
C(dose)[T.1] 59.7248 10.325 5.785 0.000 38.188 81.262
expression 11.7650 10.746 1.095 0.287 -10.650 34.180
Omnibus: 1.770 Durbin-Watson: 2.025
Prob(Omnibus): 0.413 Jarque-Bera (JB): 1.045
Skew: 0.129 Prob(JB): 0.593
Kurtosis: 1.988 Cond. No. 220.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:33:01 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.115
Model: OLS Adj. R-squared: 0.073
Method: Least Squares F-statistic: 2.727
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.114
Time: 04:33:01 Log-Likelihood: -111.70
No. Observations: 23 AIC: 227.4
Df Residuals: 21 BIC: 229.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 292.9569 129.306 2.266 0.034 24.051 561.862
expression -23.3600 14.146 -1.651 0.114 -52.777 6.057
Omnibus: 2.572 Durbin-Watson: 2.023
Prob(Omnibus): 0.276 Jarque-Bera (JB): 1.338
Skew: 0.235 Prob(JB): 0.512
Kurtosis: 1.916 Cond. No. 176.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.051 0.824 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.460
Model: OLS Adj. R-squared: 0.313
Method: Least Squares F-statistic: 3.123
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0700
Time: 04:33:01 Log-Likelihood: -70.679
No. Observations: 15 AIC: 149.4
Df Residuals: 11 BIC: 152.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 134.5461 176.244 0.763 0.461 -253.364 522.456
C(dose)[T.1] -123.9458 408.191 -0.304 0.767 -1022.368 774.476
expression -6.9581 18.230 -0.382 0.710 -47.082 33.165
expression:C(dose)[T.1] 17.8625 42.011 0.425 0.679 -74.602 110.327
Omnibus: 3.845 Durbin-Watson: 0.859
Prob(Omnibus): 0.146 Jarque-Bera (JB): 2.229
Skew: -0.944 Prob(JB): 0.328
Kurtosis: 3.061 Cond. No. 585.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 4.931
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0273
Time: 04:33:01 Log-Likelihood: -70.801
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 102.1025 153.351 0.666 0.518 -232.021 436.226
C(dose)[T.1] 49.4741 15.754 3.140 0.009 15.150 83.798
expression -3.5947 15.854 -0.227 0.824 -38.137 30.947
Omnibus: 2.256 Durbin-Watson: 0.816
Prob(Omnibus): 0.324 Jarque-Bera (JB): 1.662
Skew: -0.770 Prob(JB): 0.436
Kurtosis: 2.464 Cond. No. 192.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:33:01 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.077
Method: Least Squares F-statistic: 0.0001806
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.989
Time: 04:33:01 Log-Likelihood: -75.300
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 90.9985 198.816 0.458 0.655 -338.516 520.513
expression 0.2754 20.497 0.013 0.989 -44.005 44.556
Omnibus: 0.568 Durbin-Watson: 1.620
Prob(Omnibus): 0.753 Jarque-Bera (JB): 0.567
Skew: 0.041 Prob(JB): 0.753
Kurtosis: 2.051 Cond. No. 192.