AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.236 0.632 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.599
Method: Least Squares F-statistic: 11.95
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.000126
Time: 21:19:43 Log-Likelihood: -100.91
No. Observations: 23 AIC: 209.8
Df Residuals: 19 BIC: 214.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -48.7730 389.866 -0.125 0.902 -864.772 767.226
C(dose)[T.1] -46.0086 614.733 -0.075 0.941 -1332.659 1240.642
expression 9.3767 35.494 0.264 0.794 -64.913 83.666
expression:C(dose)[T.1] 9.0830 56.035 0.162 0.873 -108.200 126.365
Omnibus: 0.741 Durbin-Watson: 2.036
Prob(Omnibus): 0.691 Jarque-Bera (JB): 0.701
Skew: 0.116 Prob(JB): 0.704
Kurtosis: 2.177 Cond. No. 1.89e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.83
Date: Mon, 27 Jan 2025 Prob (F-statistic): 2.52e-05
Time: 21:19:43 Log-Likelihood: -100.93
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -88.7975 294.269 -0.302 0.766 -702.632 525.038
C(dose)[T.1] 53.6259 8.739 6.137 0.000 35.397 71.855
expression 13.0211 26.788 0.486 0.632 -42.859 68.901
Omnibus: 0.720 Durbin-Watson: 2.049
Prob(Omnibus): 0.698 Jarque-Bera (JB): 0.688
Skew: 0.101 Prob(JB): 0.709
Kurtosis: 2.177 Cond. No. 748.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 21:19:43 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.048
Method: Least Squares F-statistic: 0.001734
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.967
Time: 21:19:43 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 59.4819 485.954 0.122 0.904 -951.114 1070.078
expression 1.8443 44.285 0.042 0.967 -90.252 93.941
Omnibus: 3.309 Durbin-Watson: 2.495
Prob(Omnibus): 0.191 Jarque-Bera (JB): 1.572
Skew: 0.290 Prob(JB): 0.456
Kurtosis: 1.858 Cond. No. 745.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.594 0.053 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.620
Model: OLS Adj. R-squared: 0.517
Method: Least Squares F-statistic: 5.990
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0113
Time: 21:19:43 Log-Likelihood: -68.037
No. Observations: 15 AIC: 144.1
Df Residuals: 11 BIC: 146.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -1615.6824 1185.583 -1.363 0.200 -4225.133 993.768
C(dose)[T.1] 979.1526 1264.030 0.775 0.455 -1802.958 3761.263
expression 144.2906 101.635 1.420 0.183 -79.406 367.987
expression:C(dose)[T.1] -80.1286 108.276 -0.740 0.475 -318.442 158.184
Omnibus: 0.925 Durbin-Watson: 1.225
Prob(Omnibus): 0.630 Jarque-Bera (JB): 0.771
Skew: -0.272 Prob(JB): 0.680
Kurtosis: 2.031 Cond. No. 3.44e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.601
Model: OLS Adj. R-squared: 0.535
Method: Least Squares F-statistic: 9.052
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00401
Time: 21:19:43 Log-Likelihood: -68.402
No. Observations: 15 AIC: 142.8
Df Residuals: 12 BIC: 144.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -792.1419 401.146 -1.975 0.072 -1666.164 81.880
C(dose)[T.1] 43.7727 13.622 3.213 0.007 14.094 73.452
expression 73.6897 34.379 2.143 0.053 -1.217 148.596
Omnibus: 1.125 Durbin-Watson: 1.033
Prob(Omnibus): 0.570 Jarque-Bera (JB): 0.888
Skew: -0.341 Prob(JB): 0.642
Kurtosis: 2.023 Cond. No. 709.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 21:19:43 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.258
Model: OLS Adj. R-squared: 0.201
Method: Least Squares F-statistic: 4.529
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0530
Time: 21:19:43 Log-Likelihood: -73.058
No. Observations: 15 AIC: 150.1
Df Residuals: 13 BIC: 151.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -1008.9904 518.209 -1.947 0.073 -2128.513 110.532
expression 94.2121 44.270 2.128 0.053 -1.427 189.852
Omnibus: 0.816 Durbin-Watson: 1.661
Prob(Omnibus): 0.665 Jarque-Bera (JB): 0.777
Skew: 0.388 Prob(JB): 0.678
Kurtosis: 2.199 Cond. No. 698.