AIM Score vs. Gene Expression 
		Full X range:
		
		 
			
		
		Auto X range:
		
		 
		
		
		
		Group Comparisons: Boxplots
		
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.236  |   0.632  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.654 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.599 | 
  | Method: |              Least Squares |     F-statistic:        |     11.95 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  0.000126 | 
  | Time: |                  08:55:23 |        Log-Likelihood:     |   -100.91 | 
  | No. Observations: |           23 |         AIC:                |     209.8 | 
  | Df Residuals: |               19 |         BIC:                |     214.4 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  -48.7730 |    389.866 |     -0.125 |   0.902 |   -864.772   767.226 | 
  | C(dose)[T.1] |               -46.0086 |    614.733 |     -0.075 |   0.941 |  -1332.659  1240.642 | 
  | expression |                   9.3767 |     35.494 |      0.264 |   0.794 |    -64.913    83.666 | 
  | expression:C(dose)[T.1] |      9.0830 |     56.035 |      0.162 |   0.873 |   -108.200   126.365 | 
  | Omnibus: |         0.741 |    Durbin-Watson:      |     2.036 | 
  | Prob(Omnibus): |   0.691 |    Jarque-Bera (JB):   |     0.701 | 
  | Skew: |            0.116 |    Prob(JB):           |     0.704 | 
  | Kurtosis: |        2.177 |    Cond. No.           |  1.89e+03 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.653 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.618 | 
  | Method: |              Least Squares |     F-statistic:        |     18.83 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  2.52e-05 | 
  | Time: |                  08:55:23 |        Log-Likelihood:     |   -100.93 | 
  | No. Observations: |           23 |         AIC:                |     207.9 | 
  | Df Residuals: |               20 |         BIC:                |     211.3 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |       -88.7975 |    294.269 |     -0.302 |   0.766 |   -702.632   525.038 | 
  | C(dose)[T.1] |     53.6259 |      8.739 |      6.137 |   0.000 |     35.397    71.855 | 
  | expression |       13.0211 |     26.788 |      0.486 |   0.632 |    -42.859    68.901 | 
  | Omnibus: |         0.720 |    Durbin-Watson:      |     2.049 | 
  | Prob(Omnibus): |   0.698 |    Jarque-Bera (JB):   |     0.688 | 
  | Skew: |            0.101 |    Prob(JB):           |     0.709 | 
  | Kurtosis: |        2.177 |    Cond. No.           |      748. | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.649 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.632 | 
  | Method: |              Least Squares |     F-statistic:        |     38.84 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  3.51e-06 | 
  | Time: |                  08:55:23 |        Log-Likelihood:     |   -101.06 | 
  | No. Observations: |           23 |         AIC:                |     206.1 | 
  | Df Residuals: |               21 |         BIC:                |     208.4 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        54.2083 |      5.919 |      9.159 |   0.000 |     41.900    66.517 | 
  | C(dose)[T.1] |     53.3371 |      8.558 |      6.232 |   0.000 |     35.539    71.135 | 
  | Omnibus: |         0.322 |    Durbin-Watson:      |     1.888 | 
  | Prob(Omnibus): |   0.851 |    Jarque-Bera (JB):   |     0.485 | 
  | Skew: |            0.060 |    Prob(JB):           |     0.785 | 
  | Kurtosis: |        2.299 |    Cond. No.           |      2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.000 | 
  | Model: |                    OLS |          Adj. R-squared:     |    -0.048 | 
  | Method: |              Least Squares |     F-statistic:        |  0.001734 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |    0.967 |  
  | Time: |                  08:55:23 |        Log-Likelihood:     |   -113.10 | 
  | No. Observations: |           23 |         AIC:                |     230.2 | 
  | Df Residuals: |               21 |         BIC:                |     232.5 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |      59.4819 |    485.954 |      0.122 |   0.904 |   -951.114  1070.078 | 
  | expression |      1.8443 |     44.285 |      0.042 |   0.967 |    -90.252    93.941 | 
  | Omnibus: |         3.309 |    Durbin-Watson:      |     2.495 | 
  | Prob(Omnibus): |   0.191 |    Jarque-Bera (JB):   |     1.572 | 
  | Skew: |            0.290 |    Prob(JB):           |     0.456 | 
  | Kurtosis: |        1.858 |    Cond. No.           |      745. | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  4.594  |   0.053  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.620 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.517 | 
  | Method: |              Least Squares |     F-statistic:        |     5.990 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0113 |  
  | Time: |                  08:55:23 |        Log-Likelihood:     |   -68.037 | 
  | No. Observations: |           15 |         AIC:                |     144.1 | 
  | Df Residuals: |               11 |         BIC:                |     146.9 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                -1615.6824 |   1185.583 |     -1.363 |   0.200 |  -4225.133   993.768 | 
  | C(dose)[T.1] |               979.1526 |   1264.030 |      0.775 |   0.455 |  -1802.958  3761.263 | 
  | expression |                 144.2906 |    101.635 |      1.420 |   0.183 |    -79.406   367.987 | 
  | expression:C(dose)[T.1] |    -80.1286 |    108.276 |     -0.740 |   0.475 |   -318.442   158.184 | 
  | Omnibus: |         0.925 |    Durbin-Watson:      |     1.225 | 
  | Prob(Omnibus): |   0.630 |    Jarque-Bera (JB):   |     0.771 | 
  | Skew: |           -0.272 |    Prob(JB):           |     0.680 | 
  | Kurtosis: |        2.031 |    Cond. No.           |  3.44e+03 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.601 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.535 | 
  | Method: |              Least Squares |     F-statistic:        |     9.052 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00401 | 
  | Time: |                  08:55:23 |        Log-Likelihood:     |   -68.402 | 
  | No. Observations: |           15 |         AIC:                |     142.8 | 
  | Df Residuals: |               12 |         BIC:                |     144.9 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |      -792.1419 |    401.146 |     -1.975 |   0.072 |  -1666.164    81.880 | 
  | C(dose)[T.1] |     43.7727 |     13.622 |      3.213 |   0.007 |     14.094    73.452 | 
  | expression |       73.6897 |     34.379 |      2.143 |   0.053 |     -1.217   148.596 | 
  | Omnibus: |         1.125 |    Durbin-Watson:      |     1.033 | 
  | Prob(Omnibus): |   0.570 |    Jarque-Bera (JB):   |     0.888 | 
  | Skew: |           -0.341 |    Prob(JB):           |     0.642 | 
  | Kurtosis: |        2.023 |    Cond. No.           |      709. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.449 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.406 | 
  | Method: |              Least Squares |     F-statistic:        |     10.58 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00629 | 
  | Time: |                  08:55:23 |        Log-Likelihood:     |   -70.833 | 
  | No. Observations: |           15 |         AIC:                |     145.7 | 
  | Df Residuals: |               13 |         BIC:                |     147.1 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        67.4286 |     11.044 |      6.106 |   0.000 |     43.570    91.287 | 
  | C(dose)[T.1] |     49.1964 |     15.122 |      3.253 |   0.006 |     16.527    81.866 | 
  | Omnibus: |         2.713 |    Durbin-Watson:      |     0.810 | 
  | Prob(Omnibus): |   0.258 |    Jarque-Bera (JB):   |     1.868 | 
  | Skew: |           -0.843 |    Prob(JB):           |     0.393 | 
  | Kurtosis: |        2.619 |    Cond. No.           |      2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.258 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.201 | 
  | Method: |              Least Squares |     F-statistic:        |     4.529 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0530 |  
  | Time: |                  08:55:23 |        Log-Likelihood:     |   -73.058 | 
  | No. Observations: |           15 |         AIC:                |     150.1 | 
  | Df Residuals: |               13 |         BIC:                |     151.5 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |   -1008.9904 |    518.209 |     -1.947 |   0.073 |  -2128.513   110.532 | 
  | expression |     94.2121 |     44.270 |      2.128 |   0.053 |     -1.427   189.852 | 
  | Omnibus: |         0.816 |    Durbin-Watson:      |     1.661 | 
  | Prob(Omnibus): |   0.665 |    Jarque-Bera (JB):   |     0.777 | 
  | Skew: |            0.388 |    Prob(JB):           |     0.678 | 
  | Kurtosis: |        2.199 |    Cond. No.           |      698. |