AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.463 | 0.504 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.666 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 12.64 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.97e-05 |
Time: | 05:12:16 | Log-Likelihood: | -100.49 |
No. Observations: | 23 | AIC: | 209.0 |
Df Residuals: | 19 | BIC: | 213.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 88.3428 | 245.516 | 0.360 | 0.723 | -425.528 602.214 |
C(dose)[T.1] | 342.5238 | 411.785 | 0.832 | 0.416 | -519.351 1204.399 |
expression | -3.2013 | 23.018 | -0.139 | 0.891 | -51.379 44.977 |
expression:C(dose)[T.1] | -29.2122 | 40.346 | -0.724 | 0.478 | -113.658 55.234 |
Omnibus: | 0.360 | Durbin-Watson: | 1.876 |
Prob(Omnibus): | 0.835 | Jarque-Bera (JB): | 0.505 |
Skew: | 0.036 | Prob(JB): | 0.777 |
Kurtosis: | 2.278 | Cond. No. | 1.18e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 19.15 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.25e-05 |
Time: | 05:12:16 | Log-Likelihood: | -100.80 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 189.7283 | 199.255 | 0.952 | 0.352 | -225.910 605.367 |
C(dose)[T.1] | 44.5941 | 15.501 | 2.877 | 0.009 | 12.260 76.928 |
expression | -12.7096 | 18.678 | -0.680 | 0.504 | -51.672 26.253 |
Omnibus: | 0.438 | Durbin-Watson: | 1.960 |
Prob(Omnibus): | 0.803 | Jarque-Bera (JB): | 0.548 |
Skew: | 0.053 | Prob(JB): | 0.760 |
Kurtosis: | 2.251 | Cond. No. | 482. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:12:16 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.515 |
Model: | OLS | Adj. R-squared: | 0.492 |
Method: | Least Squares | F-statistic: | 22.30 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000116 |
Time: | 05:12:16 | Log-Likelihood: | -104.78 |
No. Observations: | 23 | AIC: | 213.6 |
Df Residuals: | 21 | BIC: | 215.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 671.3690 | 125.380 | 5.355 | 0.000 | 410.626 932.112 |
expression | -57.2539 | 12.123 | -4.723 | 0.000 | -82.466 -32.042 |
Omnibus: | 0.344 | Durbin-Watson: | 2.484 |
Prob(Omnibus): | 0.842 | Jarque-Bera (JB): | 0.496 |
Skew: | -0.031 | Prob(JB): | 0.780 |
Kurtosis: | 2.283 | Cond. No. | 260. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.549 | 0.237 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.524 |
Model: | OLS | Adj. R-squared: | 0.394 |
Method: | Least Squares | F-statistic: | 4.038 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0367 |
Time: | 05:12:16 | Log-Likelihood: | -69.731 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 11 | BIC: | 150.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 710.6804 | 496.769 | 1.431 | 0.180 | -382.700 1804.061 |
C(dose)[T.1] | -428.4646 | 825.784 | -0.519 | 0.614 | -2246.003 1389.074 |
expression | -58.1936 | 44.930 | -1.295 | 0.222 | -157.085 40.697 |
expression:C(dose)[T.1] | 41.9641 | 78.725 | 0.533 | 0.605 | -131.308 215.236 |
Omnibus: | 3.730 | Durbin-Watson: | 1.441 |
Prob(Omnibus): | 0.155 | Jarque-Bera (JB): | 1.908 |
Skew: | -0.863 | Prob(JB): | 0.385 |
Kurtosis: | 3.268 | Cond. No. | 1.43e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.512 |
Model: | OLS | Adj. R-squared: | 0.430 |
Method: | Least Squares | F-statistic: | 6.290 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0135 |
Time: | 05:12:16 | Log-Likelihood: | -69.923 |
No. Observations: | 15 | AIC: | 145.8 |
Df Residuals: | 12 | BIC: | 148.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 559.5895 | 395.611 | 1.414 | 0.183 | -302.373 1421.552 |
C(dose)[T.1] | 11.3244 | 33.845 | 0.335 | 0.744 | -62.417 85.066 |
expression | -44.5248 | 35.777 | -1.245 | 0.237 | -122.476 33.426 |
Omnibus: | 6.623 | Durbin-Watson: | 1.328 |
Prob(Omnibus): | 0.036 | Jarque-Bera (JB): | 3.497 |
Skew: | -1.068 | Prob(JB): | 0.174 |
Kurtosis: | 4.016 | Cond. No. | 575. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:12:16 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.507 |
Model: | OLS | Adj. R-squared: | 0.469 |
Method: | Least Squares | F-statistic: | 13.38 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00289 |
Time: | 05:12:16 | Log-Likelihood: | -69.992 |
No. Observations: | 15 | AIC: | 144.0 |
Df Residuals: | 13 | BIC: | 145.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 679.7212 | 160.367 | 4.239 | 0.001 | 333.269 1026.173 |
expression | -55.2882 | 15.114 | -3.658 | 0.003 | -87.940 -22.636 |
Omnibus: | 6.564 | Durbin-Watson: | 1.488 |
Prob(Omnibus): | 0.038 | Jarque-Bera (JB): | 3.391 |
Skew: | -1.016 | Prob(JB): | 0.184 |
Kurtosis: | 4.139 | Cond. No. | 241. |